SOURCE DRIVER FOR 300/309-OUTPUT TFT-LCD (64 GRAY SCALE)

DESCRIPTION

The μ PD16640T is a source driver for TFT-LCD 64 gray scale displays. Its logic circuit operates at 3.3 V and the driver circuit operates at 3.3 or 5.0 V (selectable). The input data is digital at 6 bits $\times 3$ dots, and 2600,000 colors can be displayed in 64-value outputs γ-corrected by the internal D/A converter and 11 external power supplies.

The clock frequency is 55 MHzmin . By switching over the number of outputs between 300 and 309, the μ PD16640T can be used in TFT-LCD panels conforming to the SVGA/XGA standards.

FEATURES

- Precharge-less output buffer
- 64-value output by 11 external power supplies and internal D/A converter.
- Level of γ-corrected power supply can be inverted.
- Output voltage range: 2.8 VP-Pmax. (at supply voltage VdD2 of driver circuit = 3.0 V)
4.3 VP-PMAX. (at supply voltage VDD2 of driver circuit $=4.5 \mathrm{~V}$)
- CMOS level input
- 6 bit (gray scale data) $\times 3$ dot input
- High-speed data transfer: $f_{\text {max. }}=55 \mathrm{MHzmin}$. (internal data transfer rate at supply voltage Vdd1 of logic circuit $=3.0 \mathrm{~V}$)
- Number of outputs selectable (Osel $=\mathrm{H}: 300$ outputs, $\mathrm{O}_{\text {sel }}=\mathrm{L}: 309$ outputs)
- Supply voltage of driver circuit selectable (Vsel = H: 300 outputs, Osel = L: 309 outputs)

$$
\left(\mathrm{V}_{\text {sel }}=\mathrm{H}: 3.3 \mathrm{~V}, \mathrm{~V}_{\text {sel }}=\mathrm{L}: 5.0 \mathrm{~V}\right)
$$

- Slim TCP

ORDERING INFORMATION

Part No.	Package
μ PD16640TN $-\times \times \times \times$	TCP (TAB package)

Because the TCP's external shape is customized, please consult an NEC salesperson for further details in this regard.

1. BLOCK DIAGRAM

2. PIN CONFIGURATION (standard TCP: μ PD16640TN $-\times x \times$)

Osel and $V_{\text {sel }}$ pins are internally pulled up.
Therefore, the number of input pins can be reduced by opening or short-circuiting these pins to Vss2 by means of TCP wiring.

3. PIN DESCRIPTION

Pin Symbol	Pin Name	Description
S_{1} to $\mathrm{S}_{309 / 300}$	Driver output	Output 64 gray scale analog voltages converted from digital signals. Osel $=$ H: 300 outputs ($\mathrm{S}_{1} \rightarrow \mathrm{~S}_{150 / 151,} \mathrm{~S}_{160 / 151} \rightarrow \mathrm{~S}_{309 / 300}$) $\mathrm{O}_{\text {sel }}=\mathrm{L}: 309$ outputs (S_{1} to $\mathrm{S}_{309 / 300}$) Output pins S_{151} through S_{159} are invalid in 300 -output mode.
Doo to Do5	Display data input	Input 18 -bit-wide display gray scale data (6 bits) $\times 3$ dots (RGB). Dxo: LSB, Dxs: MSB
D_{10} to D15		
D_{20} to D_{25}		
R/L̄	Shift direction select input	This pin inputs/outputs start pulses when two or more μ PD16640Ts are connected in cascade. Shift direction of shift register is as follows: $R / \bar{L}=H: S T H R$ input, $S_{1} \rightarrow S_{309 / 300}$, STHL output $R / \bar{L}=L: S T H L$ input, $S_{309 / 300} \rightarrow S_{1}$, STHR output
STHR	Right shift start pulse I/O	$R / \bar{L}=H$: Inputs start pulse. $R / \bar{L}=L$: Outputs start pulse.
STHL	Left shift start pulse I/O	$R / \bar{L}=H$: Outputs start pulse. $R / \bar{L}=L$: Inputs start pulse.
Osel	Selection of Number of outputs	Selects number of outputs, This pins is internaly pulled up. $\mathrm{O}_{\text {sel }}=\mathrm{H}: 300 \text { outputs }$ $\text { Osel = L: } 309 \text { outputs }$
$\mathrm{V}_{\text {sel }}$	Driver voltage selection	Selects driver voltage. This pin is internally pulled up. $\begin{aligned} & \mathrm{V}_{\mathrm{sel}}=\mathrm{H}: \mathrm{V}_{\mathrm{DD2} 2}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{sel}}=\mathrm{L}: \mathrm{V}_{\mathrm{DD2} 2}=5.0 \mathrm{~V} \end{aligned}$
CLK	Shift clock input	Inputs shift clock to shift register. Display data is loaded to data register at rising edge of this pin. When $\mathrm{O}_{\text {sel }}=\mathrm{H}$, start pulse output goes high at rising edge of 100th clock after start pulse has been input, and serves as start pulse to driver in next stage. 100th clock of driver in first stage serves as start pulse of driver in next stage. When Osel $=\mathrm{L}$, start pulse output goes high at rising edge of 103 rd clock after start pulse has been input, and serves as start pulse of driver in next stage. 103rd clock of driver in first stage serves as start pulse of driver in next stage. Contents of data register are latched at rising edge, transferred to D/A converter, and output as analog corresponding to display data.

Pin Symbol	Pin Name	Description
STB	Latch input	Contents of internal shift register are cleared after STB has been input. One pulse of this signal is input when μ PD16640T is started, and then device operates normally. For STB input timing, refer to Relations between STB, Start Pulse, and Blanking Period in Switching Characteristic Waveform.
V 0 to V_{10}	γ-corrected power supply	Inputs γ-corrected power from external source. $\mathrm{V}_{\mathrm{SS} 2} \leq \mathrm{V}_{10} \leq \mathrm{V}_{9} \leq \mathrm{V}_{8} \leq \mathrm{V}_{7} \leq \mathrm{V}_{6} \leq \mathrm{V}_{5} \leq \mathrm{V}_{4} \leq \mathrm{V}_{3} \leq \mathrm{V}_{2} \leq \mathrm{V}_{1} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{DD} 2}$ or $\mathrm{V}_{\mathrm{SS} 2} \leq \mathrm{V}_{0} \leq \mathrm{V}_{1} \leq \mathrm{V}_{2} \leq \mathrm{V}_{3} \leq \mathrm{V}_{4} \leq \mathrm{V}_{5} \leq \mathrm{V}_{6} \leq \mathrm{V}_{7} \leq \mathrm{V}_{8} \leq \mathrm{V}_{9} \leq \mathrm{V}_{10} \leq \mathrm{V}_{\mathrm{DD}}$ Maintain gray scale power supply during gray scale voltage output.
VDD1	Logic circuit power supply	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
VDD2	Driver circuit power supply	$\begin{array}{ll} \mathrm{V}_{\text {sel }}=\mathrm{V}_{\mathrm{DD} 2} \text { or OPEN: } & \mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \\ \mathrm{~V}_{\text {sel }}=\mathrm{LDD}=5.0 \mathrm{~V} \pm 0.5 \mathrm{~V} \end{array}$
Vss1	Logic ground	Ground
Vss2	Driver ground	Ground

Caution Be sure to turn on power in the order $V_{d D 1}$, logic input, $V_{D D 2}$ and gray scale power (V_{0} to V_{10}), and turn off power in the reverse order, to prevent the μ PD16640T from being damaged by latchup. Be sure to observe this power sequence even during a transition period.

4. RELATION BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

The 11 major points on the γ-characteristic curve of the LCD panel are arbitrarily set by external power supplies V_{0} through V_{10}. If the display data is 00 H or 3 F , gray scale voltage V_{0} or V_{10} is output. If the display data is in the range 01н to 3 Ен, the higher 3 bits select an external power pair $\mathrm{V}_{\mathrm{n}+1}, \mathrm{~V}_{\mathrm{n}}$. The lower 3 bits evenly divide the range of $\mathrm{V}_{\mathrm{n}+1}$ to V_{n} into eight segments by means of D / A conversion (however, the ranges from V_{9} to V_{8} and from V_{2} to V_{1} are divided into seven segments) to output a 64 gray scale voltage.

Higher 3 bits: γ-corrected power selected Lower 3 bits: 3bit D/A

			V)
D×5	D×4	D×3	$\mathrm{V}_{\mathrm{n}+1}$ to V_{n}
0	0	0	V_{1} to V_{2}
0	0	1	V_{2} to V_{3}
0	1	0	V_{3} to V_{4}
0	1	1	V_{4} to V_{5}
1	0	0	V_{5} to V_{6}
1	0	1	V_{6} to V_{7}
1	1	0	V_{7} to V_{8}
1	1	1	V_{8} to V_{9}

Relation between Input Data Output Voltage

Input Data	Dx5	Dx4	Dx3	Dx2	Dx1	Dxo	Output Voltage
00н	0	0	0	0	0	0	V_{0}
01H	0	0	0	0	0	1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 6 / 7$
02H	0	0	0	0	,	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 5 / 7$
03н	0	0	0	0		1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 4 / 7$
04н	0	0	0	1	0	0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 3 / 7$
05 H	0	0	0	1	0	1	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 2 / 7$
06\%	0	0	0	1		0	$\mathrm{V}_{2}+\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right) \times 1 / 7$
07H	0	0	0	1	1	1	V_{2}
08н	0	0	1	0	0	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 7 / 8$
09H	0	0	1	0	0	1	$V_{3}+\left(V_{2}-V_{3}\right) \times 6 / 8$
ОАн	0	0	1	0	1	0	$V_{3}+\left(V_{2}-V_{3}\right) \times 5 / 8$
OBн	0	0	1	0		1	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 4 / 8$
OCH	0	0	1	1	0	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 3 / 8$
ODн	0	0	1	1	0	1	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 2 / 8$
ОЕн	0	0	1	1	1	0	$\mathrm{V}_{3}+\left(\mathrm{V}_{2}-\mathrm{V}_{3}\right) \times 1 / 8$
ОFн	0	0	1	1	1	1	V_{3}
10н	0	1	0	0	0	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 7 / 8$
11H	0	1	0	0	0	1	$V_{4}+\left(V_{3}-V_{4}\right) \times 6 / 8$
12н	0	1	0	0	1	0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 5 / 8$
13н	0	1	0	0		1	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 4 / 8$
14 H	0	1	0	1	0	0	$\mathrm{V}_{4}+\left(V_{3}-V_{4}\right) \times 3 / 8$
15	0	1	0	1	0	1	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 2 / 8$
16н	0	1	0	1		0	$\mathrm{V}_{4}+\left(\mathrm{V}_{3}-\mathrm{V}_{4}\right) \times 1 / 8$
17 H	0	1	0	1	1	1	V_{4}
18H	0	1	1	0	0	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 7 / 8$
19н	0	1	1	0	0	1	$V_{5}+\left(V_{4}-V_{5}\right) \times 6 / 8$
1 Ан	0	1	1	0		0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 5 / 8$
1 BH	0	1	1	0		1	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 4 / 8$
1 CH	0	1	1	1	0	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 3 / 8$
1D	0	1	1	1	0	1	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 2 / 8$
1Eн	0	1	1	1	1	0	$\mathrm{V}_{5}+\left(\mathrm{V}_{4}-\mathrm{V}_{5}\right) \times 1 / 8$
1 FH	0	1	1	1	1	1	V_{5}
20H	1	0	0	0	0	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 7 / 8$
21H	1	0	0	0	0	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 6 / 8$
22н	1	0	0	0	1	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 5 / 8$
23-	1	0	0	0	1	1	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 4 / 8$
24 H	1	0	0	1	0	0	$V_{6}+\left(V_{5}-V_{6}\right) \times 3 / 8$
25 +	1	0	0	1	0	1	$V_{6}+\left(V_{5}-V_{6}\right) \times 2 / 8$
26	1	0	0	1	1	0	$\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1 / 8$
27H	1	0	0	1	1	1	V_{6}
28H	1	0	1	0	0	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 7 / 8$
29н	1	0	1	0	0	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 6 / 8$
2 Ан	1	0	1	0		0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 5 / 8$
2 BH	1	0	1	0	1	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 4 / 8$
2 CH	1	0	1	1	0	0	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 3 / 8$
2Dh	1	0		1	0	1	$\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 2 / 8$
$2 \mathrm{E}_{\mathrm{H}}$	1	0	1	1	1	0	$V_{7}+\left(V_{6}-V_{7}\right) \times 1 / 8$
2 FH	1	0	1	1	1	1	V_{7}
3 H	1	1	0	0	0	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 7 / 8$
31H	1	1	0	0	0	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 6 / 8$
32н	1	1	0	0		0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 5 / 8$
33-	1	1	0	0	1	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 4 / 8$
34-	1	1	0	1	0	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 3 / 8$
35 H	1	1	0	1	0	1	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2 / 8$
36	1	1	0		1	0	$\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1 / 8$
37	1	1	0	1	1	1	V_{8}
38	1	1	1	0	0	0	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 6 / 7$
39н	1	1	1	0	0	1	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 5 / 7$
ЗАн	1	1	1	0	1	0	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 4 / 7$
ЗВн	1	1	1	0	1	1	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 3 / 7$
3 CH	1	1	1	1	0	0	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 2 / 7$
3D	1	1	1	1	0	1	$\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{9}\right) \times 1 / 7$
ЗЕн	1	1	1	1	1	0	V_{9}
3F\%	1	1	1	1	1	1	V_{10}

γ Corrected Power Circuit

The reference power supply of the D/A converter consists of a ladder circuit with a total of 64 resistors, and resistance Σ ri between γ-corrected power pins differs depending on each pair of γ-corrected power pins. One pair of γ-corrected power pins consists of seven or eight series resistors, and resistance Σr_{i} in the figure below is indicated as the sum of the seven or eight resistors. The resistance ratio between the γ-corrected power pins (Σ ri ratio) is designed to be a value relatively close to the ratio of the γ-corrected voltages V_{1} through V_{9} (gray scale voltages in 8 steps) used in an actual LCD panel. Under ideal conditions where there is no difference between the two, therefore, there is no voltage difference between the voltage of the γ-corrected power supplies and the gray scale voltages in 8 steps of the resistor ladder circuits of the μ PD16640T, and no current flows into the γ-corrected power pins V_{1} through V_{9}. As a result, a voltage follower circuit is not necessary.

Relation between Input Data and Output Data

Data format: 1 pixel data (6 bits $) \times$ RGB (3 dots)
Input width: 18 bits
$\mathrm{R} / \overline{\mathrm{L}}=\mathrm{H}$ (right shift)

Output	$S_{1 / 1}$	$S_{2 / 2}$	$S_{3 / 3}$	\cdots	$S_{308 / 299}$	$S_{309 / 300}$
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	\cdots	D_{10} to D_{15}	D_{20} to D_{25}

$R / \bar{L}=L$ (left shift)

Output	$S_{1 / 1}$	$S_{2 / 2}$	$S_{3 / 3}$	\cdots	$S_{308 / 299}$	$S_{309 / 300}$
Data	D_{00} to D_{05}	D_{10} to D_{15}	D_{20} to D_{25}	\cdots	D_{10} to D_{15}	D_{20} to D_{25}

5. OPERATION OF OUTPUT BUFFER

The output buffer consists of a operational amplifier circuit that does not perform precharge operation. Therefore, driver output current Ivoн $1 / 2$ is the charging current to the LCD, and IvoL $1 / 2$ is the discharging current.
<LCD panel driving waveform of μ PD16640T>

6. ELECTRIC SPECIFICATION

Absolute Maximum Ratings $\left(\mathrm{Vss}_{1}=\mathrm{Vss}_{2}=0 \mathrm{~V}\right)$

Parameter	Symbol	Ratings	Unit
Supply voltage	$\mathrm{V}_{\mathrm{DD} 1}$	-0.3 V to +4.5	V
Supply voltage	$\mathrm{V}_{\mathrm{DD} 2}$	-0.3 to +6.0	V
Input voltage	V_{I}	-0.3 to $\mathrm{VDD} 1,2+0.3$	V
Output voltage	Vo_{0}	-0.3 to $\mathrm{V}_{\mathrm{DD} 1,2+0.3}$	V
Permissible dissipation	PD	150	mW
Operating temperature range	T_{A}	-10 to +75	${ }^{\circ} \mathrm{C}$
Storage temperature range	$\mathrm{T}_{\text {stg. }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

Recommended Operating Range ($\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V} s \mathrm{~s} 1=\mathrm{Vss2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Logic supply voltage	$\mathrm{V}_{\text {DD1 }}$		3.0	3.3	3.6	V
Driver supply voltage	$\mathrm{V}_{\text {DD2 }}$	$\mathrm{V}_{\text {sel }}=\mathrm{H}$	3.0	3.3	3.6	V
Driver supply voltage	$\mathrm{V}_{\text {DD2 }}$	$\mathrm{V}_{\text {sel }}=\mathrm{L}$	4.5	5.0	5.5	V
γ-corrected power supply	$\mathrm{V}_{\text {o }}$ to V_{10}		$\mathrm{~V}_{\text {ss2 }}+0.1$		$\mathrm{~V}_{\mathrm{DD} 2}-0.1$	V
Maximum clock frequency	$\mathrm{f}_{\text {max. }}$		55			MHz
Output load capacitance	CL				150	pF

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0$ to 3.6 V , $\mathrm{V}_{\mathrm{DD} 2}=3.0$ to 3.6 V or 4.5 to 5.5 V , $\mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V})$

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
High-level input voltage	V_{IH}	R/L, CLK, STB, STHR (STHL) D00-05, D10-15, D20-25		0.7 VDD		VDD1	V
Low-level input voltage	VIL			0		0.3 V do1	V
Input leakage current	IL	Do0-05, $D_{10-15, ~} D_{20-25}$ R/L̄, STB, STHR (STHL), CLK				± 1.0	$\mu \mathrm{A}$
Pull-up resistor	Rpu	$\mathrm{V}_{\text {DD1 }}=3.3 \mathrm{~V}$, $\mathrm{O}_{\text {sel }}, \mathrm{V}_{\text {sel }}$		40	100	250	$\mathrm{k} \Omega$
High-level output voltage	Voн	STHR (STHL), lo = -1.0 mA		VDD1-0.5			V
Low-level output voltage	Vol	STHR (STHL), $\mathrm{lo}=+1.0 \mathrm{~mA}$				0.5	V
Static current dissipation of γ-corrected power	IV ${ }_{\text {n }}$	$\begin{aligned} & V_{D D 1}=3.3 \mathrm{~V}, \\ & V_{D D 2}=3.3 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{n}}-\mathrm{V}_{\mathrm{n}+1}=0.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{0}-\mathrm{V}_{1}$	100	200	400	$\mu \mathrm{A}$
			$\mathrm{V}_{1}-\mathrm{V}_{2}$	54	109	218	$\mu \mathrm{A}$
			$\mathrm{V}_{2}-\mathrm{V}_{3}$	39	79	158	$\mu \mathrm{A}$
			$V_{3}-V_{4}$	68	137	274	$\mu \mathrm{A}$
			$\mathrm{V}_{4}-\mathrm{V}_{5}$	109	219	438	$\mu \mathrm{A}$
			$\mathrm{V}_{5}-\mathrm{V}_{6}$	116	232	464	$\mu \mathrm{A}$
			$\mathrm{V}_{6}-\mathrm{V}_{7}$	144	288	576	$\mu \mathrm{A}$
			$\mathrm{V}_{7}-\mathrm{V}_{8}$	116	232	464	$\mu \mathrm{A}$
			$\mathrm{V}_{8}-\mathrm{V}_{9}$	72	145	290	$\mu \mathrm{A}$
			$\mathrm{V}_{9}-\mathrm{V}_{10}$	92	185	370	$\mu \mathrm{A}$

Electrical Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0$ to 3.6 V , $\mathrm{V}_{\mathrm{DD} 2}=3.0$ to 3.6 V or 4.5 to 5.5 V , $\mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Driver output current$\text { (vDD2 = } 3.3 \mathrm{~V} \text {) }$	Ivorı	$\begin{aligned} & \mathrm{V}_{\text {out }}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{x}}=3.2 \mathrm{~V}^{\text {Note } 1} \\ & \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \end{aligned}$		-0.04	-0.02	mA
	IvoL1	$\begin{aligned} & V_{\text {OUT }}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{x}}=0.1 \mathrm{~V}^{\text {Note } 1} \\ & \mathrm{~V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.3 \mathrm{~V} \end{aligned}$	0.03	0.06		mA
Driver output current$\left(\mathrm{V}_{\mathrm{DD} 2}=5.0 \mathrm{~V}\right)$	Іvoн2	$\begin{aligned} & V_{\text {OUT }}=4.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=4.9 \mathrm{~V}^{\text {Note } 1} \\ & \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \end{aligned}$		-0.07	-0.03	mA
	Ivol2	$\begin{aligned} & V_{\text {OUT }}=0.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=0.1 \mathrm{~V}^{\text {Note } 1} \\ & \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5.0 \mathrm{~V} \end{aligned}$	0.04	0.08		mA
Output voltage deviation	$\Delta \mathrm{V}$ 。	$\begin{aligned} \mathrm{V}_{\mathrm{DD} 1}= & 3.3 \mathrm{~V} \\ \mathrm{VDD2}= & 3.3 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{OUT}}= & 0.5 \mathrm{~V}, 0.5 \mathrm{VDD2} \\ & \mathrm{~V}_{\mathrm{DD} 2}-0.5 \mathrm{~V} \end{aligned}$		± 6.0	± 20	mV
Output voltage range	Vo	Input data: 00 H to 3 FH	Vss2 + 0.1		VDD2 - 0.1	V
Dynamic logic current dissipation	ldo1	No load ${ }^{\text {Note } 2}$		0.2	1.0	mA
Dynamic driver current dissipation	$1 \mathrm{DD21}$	No load, $\mathrm{V}_{\text {DD2 }}=3.3 \mathrm{~V}^{\text {Note } 2}$		4.5	10	mA
Dynamic driver current dissipation	$1 \mathrm{DD22}$	No load, VDD2 $=5.0 \mathrm{~V}^{\text {Note } 2}$		4.6	10	mA

Notes 1. Vx is output voltage of analog output pin S_{1} to $S_{309 / 300}$.
Vout is the voltage applied to analog output pin S_{1} to $\mathrm{S}_{309 / 300}$.
2. The STB cycle is specified at $31 \mu \mathrm{~s}$ and fcLK $=16 \mathrm{MHz}$. Input data: $0101 \ldots$ (checkerboard pattern)

Switching Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-10\right.$ to $+75^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{DD} 1}=3.0$ to 3.6 V , $\mathrm{V}_{\mathrm{DD} 2}=3.0$ to 3.6 V or 4.5 to 5.5 V , $\left.\mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}, \mathrm{tr}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3.0 \mathrm{~ns}\right)$

Parameter	Symbol	Condition		MIN.	TYP.	MAX.	Unit
Start pulse delay time	tPLH1	$\mathrm{CL}=15 \mathrm{pF}$			7.0	12	ns
Start pulse delay time	tPHL1	$\mathrm{CL}=15 \mathrm{pF}$			7.0	12	ns
Driver output delay time 1	tpLH21	$\begin{aligned} & \mathrm{VDD2}=3.3 \mathrm{~V} \\ & 4 \mathrm{k} \Omega+ \\ & 24 \mathrm{pF} \times 2 \end{aligned}$	$\begin{aligned} \text { Vo: } & 0.1 \mathrm{~V} \\ & \rightarrow 3.2 \mathrm{~V} \end{aligned}$		3.6		$\mu \mathrm{s}$
Driver output delay time 2	tpLH31				5.1	10	$\mu \mathrm{s}$
Driver output delay time 1	tphL21		$\begin{aligned} \text { Vo: } & 3.2 \mathrm{~V} \\ & \rightarrow 0.1 \mathrm{~V} \end{aligned}$		3.1		$\mu \mathrm{s}$
Driver output delay time 2	tphL31				4.6	10	$\mu \mathrm{S}$
Driver output delay time 1	tpLH22	$\begin{aligned} & \mathrm{VDD} 2=5.0 \mathrm{~V} \\ & 4 \mathrm{k} \Omega+ \\ & \quad 24 \mathrm{pF} \times 2 \end{aligned}$	$\begin{aligned} \text { Vo: } & 0.1 \mathrm{~V} \\ & \rightarrow 4.9 \mathrm{~V} \end{aligned}$		3.5		$\mu \mathrm{s}$
Driver output delay time 2	tPLH32				4.6	10	$\mu \mathrm{S}$
Driver output delay time 1	tPHL22		$\text { Vo: } \begin{aligned} & 4.9 \mathrm{~V} \\ & \rightarrow 0.1 \mathrm{~V} \end{aligned}$		3.0		$\mu \mathrm{s}$
Driver output delay time 2	tPHL32				4.4	10	$\mu \mathrm{s}$
Input capacitance	C_{11}	STHR (L), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			10	20	pF
Input capacitance	C_{12}	V_{0} to $\mathrm{V}_{10}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			60	100	pF
Input capacitance	C_{13}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ other than STHR (H) , Vo to V_{10}			10	15	pF

Timing Requirements ($\mathrm{T}_{\mathrm{A}}=-10$ to $75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.0$ to 3.6 V , $\mathrm{V}_{\mathrm{DD} 2}=3.0$ to 3.6 V or 4.5 to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$, $\mathbf{t r}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=\mathbf{3 . 0} \mathbf{n s}$)

Parameter	Symbol	Condition	MIN.	TYP.	MAX.	Unit
Input signal rise time	tr	$10 \% \rightarrow 90 \%$	3.0		8.0	ns
Input signal fall time	tf	90\% $\rightarrow 10 \%$	3.0		8.0	ns
Clock pulse width	PWalk		18			ns
Clock low period	PWclk(L)		4			ns
Clock high period	PWCLK(H)		4			ns
Data setup time	tsetup1		4			ns
Data hold time	thold1		0			ns
Start pulse setup time	tsetup2		4			ns
Start pulse hold time	thold2		0			ns
Start pulse low period	tspl		2			CLK
Start pulse rise time	tspri	$\mathrm{O}_{\text {sel }}=\mathrm{H}$	100			CLK
Start pulse rise time	tspR2	Osel $=$ L	103			CLK
STB setup time	tsetup3		1			CLK
Data invalid period	tinv		1			CLK
Final data timing	tıot				1	CLK
CLK-STB time	tсlк-stb	CLK $\uparrow \rightarrow$ STB \uparrow or \downarrow	7			ns
STB-CLK time	tstb-clk	STB \uparrow or $\downarrow \rightarrow$ CLK \uparrow	7			ns

Note Input a pulse width of 2 clocks of more of the clock frequency used.

8. RECOMMENDED MOUNTING CONDITIONS

Mounting this product under the following conditions is recommended.
For the mounting methods and conditions other than those recommended, consult NEC.

Mounting Condition	Mounting Method	Condition
Thermocompression bonding	Soldering	Heating tool: 300 to $350^{\circ} \mathrm{C}$, Heating time: 2 to 3 seconds, Pressure: 100 g (per product)
	ACF (sheet adhesive)	Preliminary adhesion: 70 to $100^{\circ} \mathrm{C}$, Pressure: 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2}$, Time: 3 to 5 seconds Real adhesion: 165 to $185^{\circ} \mathrm{C}$, Pressure: 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}$:Time: 30 to 40 seconds (when SUMIZAC1003 of Sumitomo Bakelite is used)

Note For the mounting conditions for ACF, consult the ACF manufacturer.
Do not use two more mounting methods in combination.

Reference

NEC Semiconductor Device Reliability/Quality Control System (C10983E)
Quality Grades to NEC's Semiconductor Devices (C11531E)

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

