## 384-OUTPUT TFT-LCD SOURCE DRIVER (COMPATIBLE WITH 64-GRAY SCALES)

- Output dynamic range : Vss2+0.1 V to Vdd2-0.1 V
$\star \quad$ • Logic part power supply voltage (VDD1) : 3.3 $\pm 0.3 \mathrm{~V}$
$\star \quad$ • Driver part power supply voltage (VDD2 ) : $8.5 \pm 0.5 \mathrm{~V}$
- CMOS level input
- Input of 6 bits (gradation data) by 6 dots
- High-speed data transfer: fmax. $=40 \mathrm{MHz}$ (internal data transfer speed when operating at 3.0 V )
- Apply for dot-line inversion, n-line inversion and column line inversion
- Single bank arrangement is possible (loaded with slim or bending TCP) (POL)
- Display data inversion function (POL2)


## ORDERING INFORMATION

| Part Number | Package |
| :---: | :---: |
| $\mu$ PD16732N $-\times \times \times$ | TCP (TAB package) |

Remark The TCP's external shape is customized. To order your TCP's external shape, please contact a NEC salesperson.

[^0]
## BLOCK DIAGRAM



Remark /xxx indicates active low signal.

## RELATIONSHIP BETWEEN OUTPUT CIRCUIT AND D/A CONVERTER



PIN CONFIGURATION ( $\mu$ PD16732N- $x \times x$ )


Remark This figure does not specify the TCP package.

## 1. PIN FUNCTIONS

| Pin Symbol | Pin Name | Description |
| :---: | :---: | :---: |
| $\mathrm{S}_{1}$ to $\mathrm{S}_{384}$ | Driver output | The D/A converted 64-gray-scale analog voltage is output. |
| D00 to D05 | Display data input | The display data is input with a width of 36 bits, viz., the gray scale data ( 6 bits) by 6 dots ( 2 pixels). <br> Dx0: LSB, Dx5: MSB |
| $\mathrm{D}_{10}$ to $\mathrm{D}_{15}$ |  |  |
| $\mathrm{D}_{20}$ to $\mathrm{D}_{25}$ |  |  |
| $\mathrm{D}_{30}$ to $\mathrm{D}_{35}$ |  |  |
| $\mathrm{D}_{40}$ to $\mathrm{D}_{45}$ |  |  |
| D50 to D ${ }_{55}$ |  |  |
| R,/L | Shift direction control input | These refer to the start pulse input/output pins when driver ICs are connected in cascade. The shift directions of the shift registers are as follows. <br> $R, / L=H: S T H R$ input, $S_{1} \rightarrow S_{384}$, STHL output <br> $R, / L=L: S T H L$ input, $S_{384} \rightarrow S_{1}$, STHR output |
| STHR | Right shift start pulse input/output | $R, / L=H$ : Becomes the start pulse input pin. <br> $R, / L=L$ : Becomes the start pulse output pin. |
| STHL | Left shift start pulse input/output | $\mathrm{R}, / \mathrm{L}=\mathrm{H}$ : Becomes the start pulse output pin. <br> $R, / L=L$ : Becomes the start pulse input pin. |
| CLK | Shift clock input | Refers to the shift register's shift clock input. The display data is incorporated into the data register at the rising edge. <br> At the rising edge of the 64th clock after the start pulse input, the start pulse output reaches the high level, thus becoming the start pulse of the next-level driver. |
| STB | Latch input | The contents of the data register are transferred to the latch circuit at the rising edge. And, at the falling edge, the gray scale voltage is supplied to the driver. It is necessary to ensure input of one pulse per horizontal period. |
| POL | Polarity input | $\mathrm{POL}=\mathrm{L}$ : The $\mathrm{S}_{2 n-1}$ output uses $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ as the reference supply. The $\mathrm{S}_{2 n}$ output uses $\mathrm{V}_{5}$ to $\mathrm{V}_{9}$ as the reference supply. <br> $\mathrm{POL}=\mathrm{H}$ : The $\mathrm{S}_{2 n-1}$ output uses $\mathrm{V}_{5}$ to $\mathrm{V}_{9}$ as the reference supply. The $\mathrm{S}_{2 n}$ output uses $\mathrm{V}_{0}$ to $\mathrm{V}_{4}$ as the reference supply. <br> $\mathrm{S}_{2 n-1}$ indicates the odd output: and $\mathrm{S}_{2 n}$ indicates the even output. Input of the POL signal is allowed the setup time(tpol-sтв) with respect to STB's rising edge. |
| POL2 | Data inversion | $\mathrm{POL} 2=\mathrm{H}$ : Display data is inverted. <br> POL2 $=\mathrm{L}$ : Display data is not inverted. |
| Vo to $\mathrm{V}_{9}$ | $\gamma$-corrected power supplies | Input the $\gamma$-corrected power supplies from outside by using operational amplifier. Make sure to maintain the following relationships. During the gray scale voltage output, be sure to keep the gray scale level power supply at a constant level. $V_{\text {DD2 }}>\mathrm{V}_{0}>\mathrm{V}_{1}>\mathrm{V}_{2}>\mathrm{V}_{3}>\mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9}>\mathrm{V}_{\mathrm{SS} 2}$ |
| VDD1 | Logic power supply | $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ |
| VDD2 | Driver power supply | $8.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ |
| Vss1 | Logic ground | Grounding |
| Vss2 | Driver ground | Grounding |

Cautions 1. The power start sequence must be $V_{D D 1}$, logic input, and $V_{D D 2} \& V_{0}$ to $V_{9}$ in that order. Reverse this sequence to shut down. (Simultaneous power application to $V_{d D 2}$ and $V_{0}$ to $V_{9}$ is possible.)
2. To stabilize the supply voltage, please be sure to insert a $0.1 \mu \mathrm{~F}$ bypass capacitor between $\mathrm{V}_{\mathrm{DD} 1}$ $V_{\mathrm{ss} 1}$ and $\mathrm{V}_{\mathrm{DD2}}-\mathrm{V}_{\mathrm{ss} 2}$. Furthermore, for increased precision of the $\mathrm{D} / \mathrm{A}$ converter, insertion of a bypass capacitor of about $0.01 \mu \mathrm{~F}$ is also advised between the $\boldsymbol{\gamma}$-corrected power supply terminals $\left(\mathrm{V}_{0}, \mathrm{~V}_{1}, \mathrm{~V}_{2}, \cdots, \mathrm{~V}_{9}\right)$ and $\mathrm{V}_{\mathrm{ss}}$.

## 2. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT VOLTAGE VALUE

This product incorporates a 6-bit D/A converter whose odd output pins and even output pins output respectively gray scale voltages of differing polarity with respect to the LCD's counter electrode (common electrode) voltage. The D/A converter consists of ladder resistors and switches.

Figure 2-1 shows the relationship between the driving voltages such as liquid-crystal driving voltages VDD2 and Vss2, common electrode potential $\mathrm{V}^{\text {сом }}$, and $\gamma$-corrected voltages $\mathrm{V}_{0}$ to $\mathrm{V}_{9}$ and the input data. Be sure to maintain the voltage relationships of $V_{\text {DD2 }}>V_{0}>V_{1}>V_{2}>V_{3}>V_{4}>V_{5}>V_{6}>V_{7}>V_{8}>V_{9}>V_{s s 2}$.

Figures 2-2 and 2-3 show the relationship between the input data and the output data. This driver IC is designed for only single-sided mounting. Therefore, please do not use it for $\gamma$-corrected power supply level inversion in double-sided mounting.

Figure 2-1. Relationship between Input Data and $\boldsymbol{\gamma}$-corrected Power Supply


Figure 2-2. Relationship between Input Data and Output Voltage(1/2)
$V_{D D 2}>V_{0}>V_{1}>V_{2}>V_{3}>V_{4}>V_{5}$, POL2 $=L$


Caution Between $\mathrm{V}_{4}$ and $\mathrm{V}_{5}$ terminal is not connected in the chip.

Figure 2-3. Relationship between Input Data and Output Voltage(2/2)
$\mathrm{V}_{4}>\mathrm{V}_{5}>\mathrm{V}_{6}>\mathrm{V}_{7}>\mathrm{V}_{8}>\mathrm{V}_{9}>\mathrm{V}_{\text {ss2 }}, \mathrm{POL} 2=\mathrm{L}$


| Data | Dx5 | D×4 | Dx3 | Dx2 | Dx1 | Dxo | Output Voltage |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3FH | 1 | 1 | 1 | 1 | 1 | 1 | V63" | $\mathrm{V}_{5}$ |
| 3Eн | 1 | 1 | 1 | 1 | 1 | 0 | V62" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 2650 / 3450$ |
| 3D ${ }^{\text {¢ }}$ | 1 | 1 | 1 | 1 | 0 | 1 | V61" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 2150 / 3450$ |
| 3CH | 1 | 1 | 1 | 1 | 0 | 0 | V60" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1850 / 3450$ |
| 3Вн | 1 | 1 | 1 | 0 | 1 | 1 | V59" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1600 / 3450$ |
| ЗАн | 1 | 1 | 1 | 0 | 1 | 0 | V58" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1350 / 3450$ |
| 39H | 1 | 1 | 1 | 0 | 0 | 1 | V57" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 1150 / 3450$ |
| 38H | 1 | 1 | 1 | 0 | 0 | 0 | V56" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 950 / 3450$ |
| 37\% | 1 | 1 | 0 | 1 | 1 | 1 | V55" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 800 / 3450$ |
| 36H | 1 | 1 | 0 | 1 | 1 | 0 | V54" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 650 / 3450$ |
| 35H | 1 | 1 | 0 | 1 | 0 | 1 | $\mathrm{V}_{53}{ }^{\prime \prime}$ | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 500 / 3450$ |
| 34H | 1 | 1 | 0 | 1 | 0 | 0 | V52" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 400 / 3450$ |
| 33H | 1 | 1 | 0 | 0 | 1 | 1 | V51" | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 300 / 3450$ |
| 32H | 1 | 1 | 0 | 0 | 1 | 0 | $\mathrm{V}_{50}{ }^{\prime \prime}$ | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 200 / 3450$ |
| 31н | 1 | 1 | 0 | 0 | 0 | 1 | $\mathrm{V}_{49}{ }^{\prime \prime}$ | $\mathrm{V}_{6}+\left(\mathrm{V}_{5}-\mathrm{V}_{6}\right) \times 100 / 3450$ |
| 30H | 1 | 1 | 0 | 0 | 0 | 0 | V48" | $\mathrm{V}_{6}$ |
| 2 FH | 1 | 0 | 1 | 1 | 1 | 1 | $\mathrm{V}_{47}{ }^{\prime \prime}$ | $\mathrm{V}_{7+}\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1500 / 1600$ |
| 2EH | 1 | 0 | 1 | 1 | 1 | 0 | $\mathrm{V}_{46}{ }^{\prime \prime}$ | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1400 / 1600$ |
| 2DH | 1 | 0 | 1 | 1 | 0 | 1 | V45" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1300 / 1600$ |
| 2CH | 1 | 0 | 1 | 1 | 0 | 0 | V44" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1200 / 1600$ |
| 2Вн | 1 | 0 | 1 | 0 | 1 | 1 | V43" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1100 / 1600$ |
| 2Ан | 1 | 0 | 1 | 0 | 1 | 0 | V42" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 1000 / 1600$ |
| 29H | 1 | 0 | 1 | 0 | 0 | 1 | $\mathrm{V}_{41}{ }^{\prime \prime}$ | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 900 / 1600$ |
| 28H | 1 | 0 | 1 | 0 | 0 | 0 | $\mathrm{V}_{40}{ }^{\prime \prime}$ | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 800 / 1600$ |
| 27\% | 1 | 0 | 0 | 1 | 1 | 1 | V39" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 700 / 1600$ |
| 26H | 1 | 0 | 0 | 1 | 1 | 0 | V38" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 600 / 1600$ |
| 25H | 1 | 0 | 0 | 1 | 0 | 1 | V37" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 500 / 1600$ |
| 24H | 1 | 0 | 0 | 1 | 0 | 0 | V36" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 400 / 1600$ |
| 23H | 1 | 0 | 0 | 0 | 1 | 1 | V35" | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 300 / 1600$ |
| 22H | 1 | 0 | 0 | 0 | 1 | 0 | $\mathrm{V}_{34}{ }^{\prime \prime}$ | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 200 / 1600$ |
| 21H | 1 | 0 | 0 | 0 | 0 | 1 | $\mathrm{V}_{33}{ }^{\prime \prime}$ | $\mathrm{V}_{7}+\left(\mathrm{V}_{6}-\mathrm{V}_{7}\right) \times 100 / 1600$ |
| 20H | 1 | 0 | 0 | 0 | 0 | 0 | V32" | $\mathrm{V}_{7}$ |
| 1FH | 0 | 1 | 1 | 1 | 1 | 1 | V31" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2650 / 2750$ |
| $1 \mathrm{EH}_{\text {H }}$ | 0 | 1 | 1 | 1 | 1 | 0 | $\mathrm{V}_{30}{ }^{\prime \prime}$ | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2550 / 2750$ |
| 1DH | 0 | 1 | 1 | 1 | 0 | 1 | $\mathrm{V}_{29}{ }^{\prime \prime}$ | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2450 / 2750$ |
| 1 CH | 0 | 1 | 1 | 1 | 0 | 0 | V28" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2350 / 2750$ |
| 1 BH | 0 | 1 | 1 | 0 | 1 | 1 | V27" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2250 / 2750$ |
| $1 \mathrm{AH}^{\text {¢ }}$ | 0 | 1 | 1 | 0 | 1 | 0 | V26" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 2100 / 2750$ |
| 19H | 0 | 1 | 1 | 0 | 0 | 1 | V25" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1950 / 2750$ |
| 18H | 0 | 1 | 1 | 0 | 0 | 0 | V24" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1800 / 2750$ |
| 17\% | 0 | 1 | 0 | 1 | 1 | 1 | V23" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1650 / 2750$ |
| 16H | 0 | 1 | 0 | 1 | 1 | 0 | V22" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1450 / 2750$ |
| 15H | 0 | 1 | 0 | 1 | 0 | 1 | V21" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1250 / 2750$ |
| 14H | 0 | 1 | 0 | 1 | 0 | 0 | V20" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 1050 / 2750$ |
| 13H | 0 | 1 | 0 | 0 | 1 | 1 | V19" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 800 / 2750$ |
| 12H | 0 | 1 | 0 | 0 | 1 | 0 | V18" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 550 / 2750$ |
| 11H | 0 | 1 | 0 | 0 | 0 | 1 | V17" | $\mathrm{V}_{8}+\left(\mathrm{V}_{7}-\mathrm{V}_{8}\right) \times 300 / 2750$ |
| 10H | 0 | 1 | 0 | 0 | 0 | 0 | $\mathrm{V}_{16}{ }^{\prime \prime}$ | V8 |
| OFH | 0 | 0 | 1 | 1 | 1 | 1 | V15" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 7750 / 8050$ |
| OEH | 0 | 0 | 1 | 1 | 1 | 0 | V14" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 7450 / 8050$ |
| ODH | 0 | 0 | 1 | 1 | 0 | 1 | V13" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 7100 / 8050$ |
| 0СH | 0 | 0 | 1 | 1 | 0 | 0 | V12" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 6750 / 8050$ |
| OBH | 0 | 0 | 1 | 0 | 1 | 1 | $\mathrm{V}_{11}{ }^{\prime \prime}$ | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 6400 / 8050$ |
| ОАн | 0 | 0 | 1 | 0 | 1 | 0 | V10" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 6000 / 8050$ |
| 09H | 0 | 0 | 1 | 0 | 0 | 1 | V9" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 5600 / 8050$ |
| 08H | 0 | 0 | 1 | 0 | 0 | 0 | V8" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 5100 / 8050$ |
| 07H | 0 | 0 | 0 | 1 | 1 | 1 | V7" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 4600 / 8050$ |
| 06H | 0 | 0 | 0 | 1 | 1 | 0 | V6" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 4050 / 8050$ |
| 05H | 0 | 0 | 0 | 1 | 0 | 1 | V5" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 3500 / 8050$ |
| 04H | 0 | 0 | 0 | 1 | 0 | 0 | V4" | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 2900 / 8050$ |
| 03H | 0 | 0 | 0 | 0 | 1 | 1 | $\mathrm{V}^{\prime \prime}$ | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 2250 / 8050$ |
| 02H | 0 | 0 | 0 | 0 | 1 | 0 | $\mathrm{V}^{\prime \prime}{ }^{\prime \prime}$ | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 1550 / 8050$ |
| 01н | 0 | 0 | 0 | 0 | 0 | 1 | $\mathrm{V}_{1}{ }^{\prime \prime}$ | $\mathrm{V}_{9}+\left(\mathrm{V}_{8}-\mathrm{V}_{8}\right) \times 800 / 8050$ |
| 00H | 0 | 0 | 0 | 0 | 0 | 0 | Vo" | $\mathrm{V}_{9}$ |


| rn | $(\Omega)$ |
| :---: | :---: |
| r62 | 800 |
| r61 | 500 |
| r60 | 300 |
| $\mathrm{r}_{59}$ | 250 |
| $\mathrm{r}_{58}$ | 250 |
| $\mathrm{r}_{57}$ | 200 |
| r56 | 200 |
| $\mathrm{r}_{55}$ | 150 |
| r54 | 150 |
| r53 | 150 |
| $\mathrm{r}_{52}$ | 100 |
| r51 | 100 |
| $\mathrm{r}_{50}$ | 100 |
| $\mathrm{r}_{49}$ | 100 |
| r48 | 100 |
| r47 | 100 |
| r46 | 100 |
| $\mathrm{r}_{45}$ | 100 |
| r44 | 100 |
| $\mathrm{r}_{43}$ | 100 |
| r42 | 100 |
| $\mathrm{r}_{41}$ | 100 |
| r40 | 100 |
| r39 | 100 |
| r38 | 100 |
| r37 | 100 |
| r36 | 100 |
| r35 | 100 |
| r34 | 100 |
| r33 | 100 |
| r32 | 100 |
| $\mathrm{r}_{31}$ | 100 |
| r30 | 100 |
| r29 | 100 |
| r28 | 100 |
| r27 | 100 |
| r26 | 150 |
| r25 | 150 |
| r24 | 150 |
| r23 | 150 |
| r22 | 200 |
| r21 | 200 |
| r20 | 200 |
| r19 | 250 |
| r18 | 250 |
| $\mathrm{r}_{17}$ | 250 |
| $\mathrm{r}_{16}$ | 300 |
| $\mathrm{r}_{15}$ | 300 |
| $\mathrm{r}_{14}$ | 300 |
| $\mathrm{r}_{13}$ | 350 |
| $\mathrm{r}_{12}$ | 350 |
| $\mathrm{r}_{11}$ | 350 |
| $\mathrm{r}_{10}$ | 400 |
| r9 | 400 |
| r8 | 500 |
| $\mathrm{r}_{7}$ | 500 |
| r6 | 550 |
| r5 | 550 |
| r 4 | 600 |
| r3 | 650 |
| r2 | 700 |
| r1 | 750 |
| ro | 800 |
| Ytotal | 15850 |

Caution Between $\mathrm{V}_{4}$ and $\mathrm{V}_{5}$ terminal is not connected in the chip.

## 3. RELATIONSHIP BETWEEN INPUT DATA AND OUTPUT PIN

Data format: 6 bits $\times 2$ RGBs ( 6 dots)
Input width : 36 bits (2-pixel data)

## R,/L=H(Right shift)

| Output | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $\cdots$ | $S_{383}$ | $S_{384}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data | $D_{00}$ to $D_{05}$ | $D_{10}$ to $D_{15}$ | $D_{20}$ to $D_{25}$ | $D_{30}$ to $D_{35}$ | $\cdots$ | $D_{40}$ to $D_{45}$ | $D_{50}$ to $D_{55}$ |

## $R, / L=L$ (Left shift)

| Output | $S_{1}$ | $S_{2}$ | $S_{3}$ | $S_{4}$ | $\ldots$ | $S_{383}$ | $S_{384}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data | $D_{00}$ to $D_{05}$ | $D_{10}$ to $D_{15}$ | $D_{20}$ to $D_{25}$ | $D_{30}$ to $D_{35}$ | $\ldots$ | $D_{40}$ to $D_{45}$ | $D_{50}$ to $D_{55}$ |


| POL | $S_{2 n-1}{ }^{\text {Note }}$ | $S_{2 n^{\text {Note }}}$ |
| :---: | :---: | :---: |
| $L$ | $V_{0}$ to $V_{4}$ | $V_{5}$ to $V_{9}$ |
| $H$ | $V_{5}$ to $V_{9}$ | $V_{0}$ to $V_{4}$ |

Note $\mathrm{S}_{2 n-1}$ (Odd output), $\mathrm{S}_{2 n}$ (Even output)

## 4. RELATIONSHIP BETWEEN STB, POL, AND OUTPUT WAVEFORM

The output voltage is written to the LCD panel synchronized with the STB falling edge.


## 5. ELECTRICAL SPECIFICATION

Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=+\mathbf{2 5}^{\circ} \mathrm{C}$, $\mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=\mathbf{0} \mathrm{V}$ )

| Parameter | Symbol | Rating | Unit |
| :---: | :---: | :---: | :---: |
| Logic Part Supply Voltage | Vod1 | -0.5 to +5.0 | V |
| Driver Part Supply Voltage | VDD2 | -0.5 to +10.0 | V |
| Logic Part Input Voltage | $V_{11}$ | -0.5 to $\mathrm{V}_{\text {DD } 1}+0.5$ | V |
| Driver Part Input Voltage | V 12 | -0.5 to $\mathrm{V}_{\text {DD2 }}+0.5$ | V |
| Logic Part Output Voltage | Vo1 | -0.5 to $\mathrm{VDD1}^{+0.5}$ | V |
| Driver Part Output Voltage | Vo2 | -0.5 to $\mathrm{V}_{\text {DD2 }}+0.5$ | V |
| Operating Temperature Range | TA | -10 to +75 | ${ }^{\circ} \mathrm{C}$ |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |

Caution If the absolute maximum rating of even one of the above parameters is exceeded even momentarily, the quality of the product may be degraded. Absolute maximum ratings, therefore, specify the values exceeding which the product may be physically damaged. Be sure to use the product within the range of the absolute maximum ratings.

Recommended Operating Range ( $\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$ )

| Parameter | Symbol | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Logic Part Supply Voltage | VDD1 | 3.0 | 3.3 | 3.6 | V |
| Driver Part Supply Voltage | VDD2 | 8.0 | 8.5 | 9.0 | V |
| High-Level Input Voltage | $\mathrm{V}_{\mathrm{H}}$ | $0.7 \mathrm{VDD1}$ |  | VDD1 | V |
| Low-Level Input Voltage | VIL | 0 |  | $0.3 \mathrm{VDD1}$ | V |
| $\gamma$-Corrected Voltage | Vo to $\mathrm{V}_{9}$ | Vss2 |  | VdD2 | V |
| Driver Part Output Voltage | Vo | $\mathrm{Vss2}+0.1$ |  | VDD2 - 0.1 | V |
| Maximum Clock Frequency | $\mathrm{fmax}^{\text {. }}$ | 40 |  |  | MHz |

Electrical Specifications ( $\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=8.5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$ )

| Parameter | Symbol | Condition |  | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input Leak Current | IIL |  |  |  |  | $\pm 1.0$ | $\mu \mathrm{A}$ |
| High-Level Output Voltage | Vor | STHR (STHL), Іон $=0 \mathrm{~mA}$ |  | $\begin{gathered} \text { VDD1 - } \\ 0.1 \end{gathered}$ |  |  | V |
| Low-Level Output Voltage | Vol | STHR (STHL), lol $=0 \mathrm{~mA}$ |  |  |  | 0.1 | V |
| $\gamma$-Corrected Supply Current | $\mathrm{I}_{\gamma}$ | $\mathrm{V}_{0}$ to $\mathrm{V}_{4}=\mathrm{V}_{5}$ to $\mathrm{V}_{9}=4.0 \mathrm{~V}$ | Vopin, <br> $V_{4}$ pin | 126 | 252 | 504 | $\mu \mathrm{A}$ |
|  |  |  | $V_{5}$ pin, <br> $V_{9}$ pin | -504 | -252 | -126 | $\mu \mathrm{A}$ |
| Driver Output Current | Ivor | $\mathrm{V} x=7.0 \mathrm{~V}$, Vout $=6.5 \mathrm{~V}^{\text {Note }}$ |  |  |  | -30 | $\mu \mathrm{A}$ |
|  | Ivol | $\mathrm{V} x=1.0 \mathrm{~V}$, Vout $=1.5 \mathrm{~V}^{\text {Note }}$ |  | 30 |  |  | $\mu \mathrm{A}$ |
| Output Voltage Deviation | $\Delta \mathrm{V}$ 。 | $\begin{aligned} & \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=8.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {out }}=2.0 \mathrm{~V}, 4.25 \mathrm{~V}, 6.5 \mathrm{~V} \end{aligned}$ |  |  | $\pm 7$ | $\pm 20$ | mV |
| Output swing difference deviation | $\Delta \mathrm{VP}_{\mathrm{P} P}$ |  |  |  | $\pm 2$ | $\pm 15$ | mV |
| Output Voltage Range | Vo | Input data |  | 0.1 |  | VDD2 0.1 | V |
| Logic Part Dynamic Current Consumption | IDD1 | VDD1, with no load |  |  | 2.0 | 10 | mA |
| Driver Part Dynamic Current Consumption | IDD2 | VDD2, with no load |  |  | 3.0 | 10 | mA |

Note $V \times$ refers to the output voltage of analog output pins $S_{1}$ to $S_{384}$.
Vout refers to the voltage applied to analog output pins $\mathrm{S}_{1}$ to $\mathrm{S}_{384}$.

Cautions 1. The STB cycle is defined to be $20 \mu \mathrm{~s}$ at fcLK $=40 \mathrm{MHz}$.
2. The TYP. values refer to an all black or all white input pattern. The MAX. value refers to the measured values in the dot checkerboard input pattern.
3. Refers to the current consumption per driver when cascades are connected under the assumption of XGA single-sided mounting (8 units).

Switching Characteristics ( $\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=8.5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{SS} 2}=0 \mathrm{~V}$ )

| Parameter | Symbol | Condition | MIN. | TYP. | MAX. | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Start Pulse Delay Time | tPLH1 | $\mathrm{CL}=10 \mathrm{pF}$ |  | 10 | 20 | ns |
| Driver Output Delay Time | tPLH2 | $\begin{aligned} & \mathrm{CL}=75 \mathrm{pF}, \mathrm{RL}=5 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{DD} 1}=3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=9.0 \mathrm{~V} \end{aligned}$ |  | 2.5 | 4 | $\mu \mathrm{s}$ |
|  | tPLH3 |  |  | 5 | 7 | $\mu \mathrm{s}$ |
|  | tPHL2 |  |  | 2.5 | 4 | $\mu \mathrm{s}$ |
|  | tPHL3 |  |  | 5 | 7 | $\mu \mathrm{s}$ |
| Input Capacitance | $\mathrm{Cl}_{11}$ | STHR (STHL) excluded, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ |  | 5 | 10 | pF |
|  | $\mathrm{Cl}_{12}$ | STHR (STHL), $\mathrm{TA}_{\text {A }}=25^{\circ} \mathrm{C}$ |  | 5 | 10 | pF |

$\mu$ PD16732

## Measurement Condition



Timing Requirement ( $\mathrm{T}_{\mathrm{A}}=-10$ to $+75^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss} 1}=\mathrm{V}_{\mathrm{ss} 2}=0 \mathrm{~V}$ )


* 6. SWITCHING CHARACTERISTICS WAVEFORM (R,/L=H)
(Unless otherwise specified, the input level is defined to be $\mathrm{V}_{\mathrm{H}}=0.7 \mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{IL}}=0.3 \mathrm{~V}_{\mathrm{DD1} 1,}$ )



## 7. RECOMMENDED SOLDERING CONDITIONS

The following conditions must be met for soldering conditions of the $\mu$ PD16732.
For more details, refer to the Semiconductor Device Mounting Technology Manual (C10535E).
Please consult with our sales offices in case other soldering process is used, or in case the soldering is done under different conditions.

Type of Surface Mount Device
$\mu$ PD16732N- $-\times x$ : TCP (TAB package)

| Mounting Condition | Mounting Method | Condition |
| :--- | :--- | :--- |
| Thermocompression | Soldering | Heating tool 300 to $350^{\circ} \mathrm{C}$ : heating for 2 to 3 seconds: pressure 100 g (per <br> solder) |
|  | ACF <br> (Adhesive <br> Conductive Film) | Temporary bonding 70 to $100^{\circ} \mathrm{C}$ : pressure 3 to $8 \mathrm{~kg} / \mathrm{cm}^{2}:$ time 3 to 5 secs. <br> Real bonding 165 to $180^{\circ} \mathrm{C}:$ pressure 25 to $45 \mathrm{~kg} / \mathrm{cm}^{2}:$ time 30 to 40 secs. <br> (When using the anisotropy conductive film SUMIZAC1003 of Sumitomo <br> Bakelite, Ltd.) |

Caution To find out the detailed conditions for packaging the ACF part, please contact the ACF manufacturing company. Be sure to avoid using two or more packaging methods at a time.
[MEMO]

## NOTES FOR CMOS DEVICES

## (1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:
Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

## (2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:
No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to $V_{D D}$ or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

## (3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:
Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

## Reference Documents <br> NEC Semiconductor Device Reliability / Quality Control System (C10983E) <br> Quality Grades to NEC’s Semiconductor Devices (C11531E)

- The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.


[^0]:    The information in this document is subject to change without notice. Before using this document, please confirm that this is the latest version.
    Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

