

MOS INTEGRATED CIRCUIT μ PD17P149

SMALL, GENERAL-PURPOSE 4 BIT SINGLE-CHIP MICROCONTROLLER

The μ PD17P149 is a one-time PROM version of the μ PD17149. It uses a one-time PROM, which can be written just once, instead of internal masked ROM of the μ PD17149.

Since a user program can be written into the PROM, this microcontroller is suited for program evaluation and low-volume production of the μ PD17145, μ PD17147, μ PD17149, or for program evaluation of the μ PD17145(A), μ PD17147(A), μ PD17149(A), μ PD17145(A1), μ PD17147(A1), and μ PD17149(A1).

The following user's manual completely describes the functions of the μ PD17P149. Be sure to read it before designing an application system.

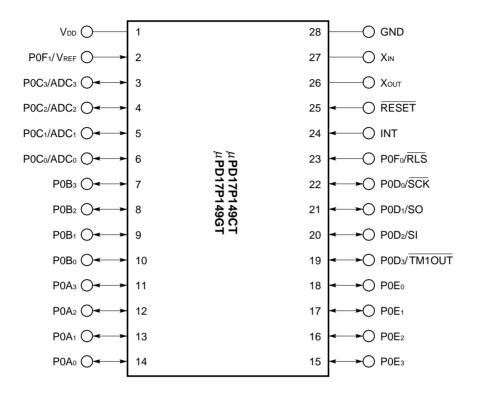
μPD17145 Sub-Series User's Manual: U10261E

FEATURES

- 17K architecture : General registers, 16-bit instructions
- Pin compatible with the μ PD17149 (except for PROM programming function)
- Internal one-time PROM : 8K bytes (4096 × 16 bits)
- Supply voltage : V_{DD} = 2.7 to 5.5 V (when operating at the range between 400 kHz and 2 MHz with ceramic oscillation)

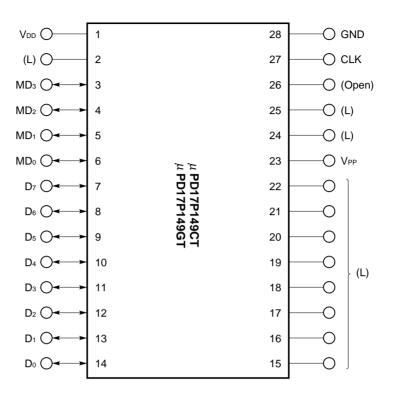
 V_{DD} = 4.5 to 5.5 V (when operating at the range between 400 kHz and 8 MHz with ceramic oscillation)

ORDERING INFORMATION


Part number	Package
μPD17P149CT	28-pin plastic shrink DIP (400 mil)
μ PD17P149GT	28-pin plastic SOP (375 mil)

In the program memory write/verify mode, the voltage used for programming is applied to pin No. 23, $POF_0/\overline{RLS}/V_{PP}$. If a voltage of VDD plus 0.3 V or more is applied to this pin in the normal operation mode, the microcontroller may crash. Design the circuit so that a voltage of this magnitude is never applied to the pin.

The information in this document is subject to change without notice.

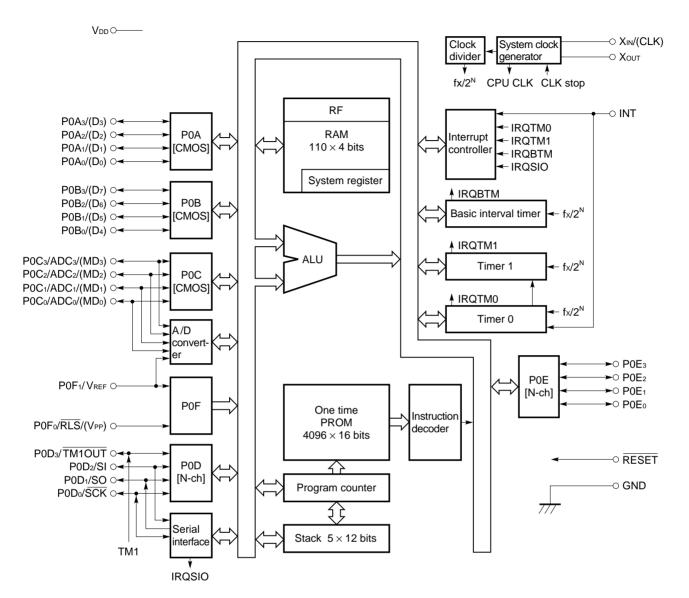

PIN CONFIGURATION (TOP VIEW)

(1) Normal operation mode

ADC ₀ - ADC ₃	:	Analog input	RESET	:	Reset input
GND	:	Ground	RLS	:	Standby release signal input
INT	:	External interrupt input	SCK	:	Serial clock input/output
P0A0 - P0A3	:	Port 0A	SI	:	Serial data input
P0B0 - P0B3	:	Port 0B	SO	:	Serial data output
P0C ₀ - P0C ₃	:	Port 0C	TM1OUT	:	Timer 1 carry output
P0D0 - P0D3	:	Port 0D	Vdd	:	Power supply
P0E0 - P0E3	:	Port 0E	Vref	:	Reference voltage for the A/D converter
P0F0 and P0F1	:	Port 0F	Xin, Xout	:	System clock oscillation

(2) Program memory write/verify mode

CLK : Input clock for address update	MDo - MDa	: Operating mode selection
Do-D7 : Data	Vdd	: Power supply
GND : Ground	Vpp	: Programming power supply


Caution Symbols in parentheses denote processing for pins not used in the program memory write/verify mode.

L : Connect these pins separately to the GND pin through pull-down resistors.

Open : Nothing should be connected on these pins.

BLOCK DIAGRAM

Remark () : PROM programming mode The terms CMOS and N-ch in brackets indicate the output form of the port.

CMOS : CMOS push-pull output

N-ch : N-channel open-drain output

CONTENTS

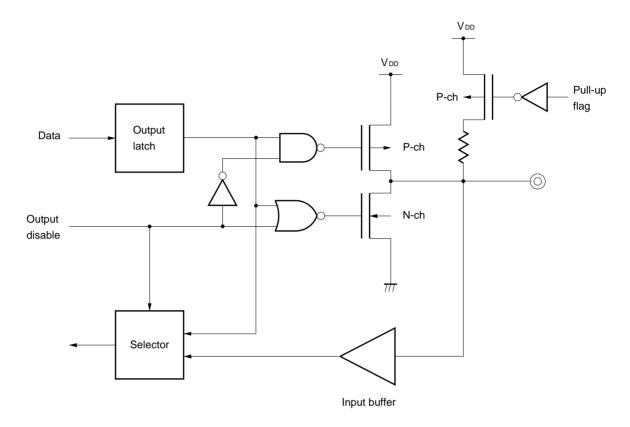
1.	PIN F	UNCTIONS	6
	1.1	NORMAL OPERATION MODE	
	1.2	PROGRAM MEMORY WRITE/VERIFY MODE	8
	1.3	EQUIVALENT INPUT/OUTPUT CIRCUITS	9
	1.4	HANDLING UNUSED PINS	13
	1.5	NOTES ON USE OF THE RESET AND P0F0/RLS PINS (ONLY AT THE NORMAL	
		OPERATION MODE)	14
2.	DIFF	ERENCES BETWEEN THE μ PD17145, μ PD17147, μ PD17149, AND	
	μ PD1	7P149	15
3.	WRIT	ING TO AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)	16
	3.1	PROGRAM MEMORY WRITE/VERIFY MODES	16
	3.2	WRITING TO PROGRAM MEMORY	17
	3.3	READING PROGRAM MEMORY	18
4.	ELEC	TRICAL CHARACTERISTICS	19
5.	PAC	AGE DRAWINGS	27
6.	RECO	OMMENDED SOLDERING CONDITIONS	29
AP	PENDI	X A. μ PD17145 SUB-SERIES PRODUCTS LIST	30
AP	PENDI	X B. DEVELOPMENT TOOLS	31

1. PIN FUNCTIONS

1.1 NORMAL OPERATION MODE

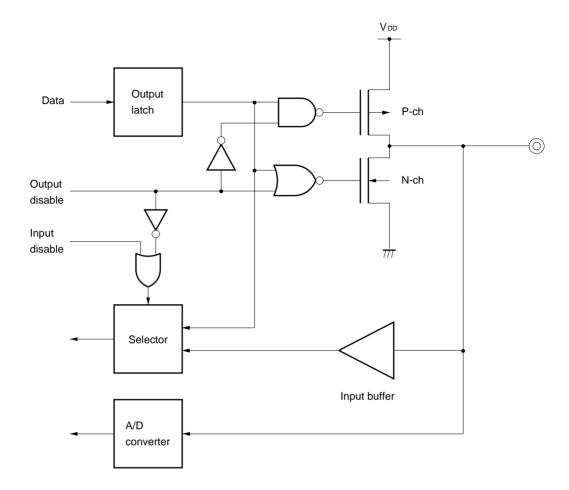
Pin No.	Symbol	Function	Output	Upon reset
1	Vdd	Power supply	-	-
2	P0F1/VREF	 Port 0F. The reference voltage is supplied to the A/D converter through this pin. P0F1 Bit 1 of 2-bit input port P0F V_{REF} Reference voltage input for the A/D converter 	Input	Input (P0F1)
3 - 6	P0C3/ADC3 - P0C0/ADC0	 Port 0C. Analog voltage is supplied to the A/D converter through these pins. POC₃ - POC₀ 4-bit input/output port Input/output setting allowed in units of 1 bit ADC₃ - ADC₀ Analog input for the A/D converter 	CMOS push-pull	Input (P0C)
7 8 9 10	P0B3 P0B2 P0B1 P0B0	 Port 0B 4-bit input/output port Input/output setting allowed in units of 4 bits Pull-up resistor incorporation specifiable by program in units of 4 bits 	CMOS push-pull	Input
11 12 13 14	P0A3 P0A2 P0A1 P0A0	 Port 0A 4-bit input/output port Input/output setting allowed in units of 4 bits Pull-up resistor incorporation specifiable by program in units of 4 bits 	CMOS push-pull	Input
15 16 17 18	P0E3 P0E2 P0E1 P0E0	 Port 0E Withstand voltage is V_{DD} (Max.). 4-bit input/output port Input/output setting allowed in units of 4 bits Pull-up resistor incorporation specifiable by program in units of 4 bits 	N-ch open drain	Input

Pin No.	Symbol	Function	Output	Upon reset
19	P0D3/TM1OUT	 Pin for port 0D, timer 1 output, serial data input, serial data output, and serial clock input/output Pull-up resistor incorporation specified by program bit by bit Withstand voltage is VDD (Max.). POD₃ - POD₀ 4-bit input/output port Input/output setting allowed bit by bit TM1OUT Timer 1 output 	N-ch open drain	Input (P0D)
20	P0D2/SI	SISerial data input		
21	P0D1/SO	SOSerial data output		
22	P0D0/SCK	SCK Serial clock input/output		
23	P0F ₀ /RLS	 Pin for port 0F and input for standby mode release signal P0F₀ Bit 0 of 2-bit input port P0F RLS Input for standby mode release signal 	Input	Input (P0F₀)
24	INT	Input for an external interrupt request signal and standby mode release signal.	Input	Input
25	RESET	System reset input pin	Input	Input
26 27	Xout Xin	For system clock oscillation The ceramic resonator is connected between X _{IN} and Xout.	-	_
28	GND	Ground	-	-

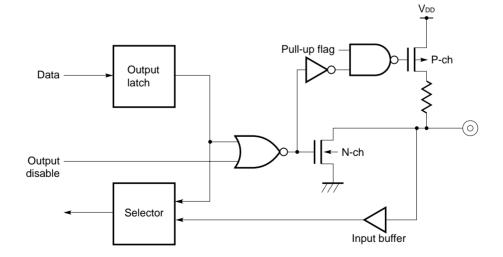

1.2 PROGRAM MEMORY WRITE/VERIFY MODE

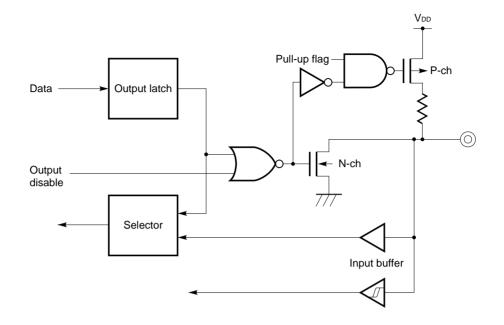
Pin No.	Pin name	Function	Input/output
1	Vdd	Power supply pin. +6 V is applied to this pin when writing to program memory or verifying its contents.	-
3 to 6	MD ₃ to MD ₀	Input pins that select an operation mode when writing to program memory or verifying its contents	Input
7 to 14	D7 to D0	Input/output pins for 8-bit data used when writing to program memory or verifying its contents	Input/output
23	Vpp	Voltage (+12.5 V) is applied to this pin when writing to program memory or verifying its contents.	-
27	CLK	Input pin for address update clocks used when writing to program memory or verifying its contents	Input
28	GND	Ground	_

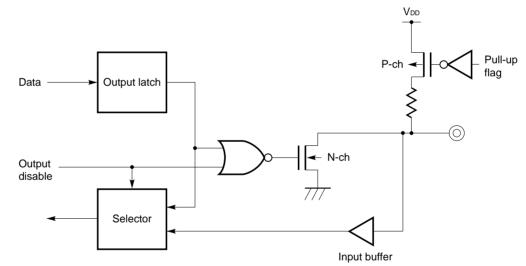
1.3 EQUIVALENT INPUT/OUTPUT CIRCUITS


Below are simplified diagrams of the input/output circuits for each pin.

(1) P0A₀ - P0A₃, P0B₀ - P0B₃

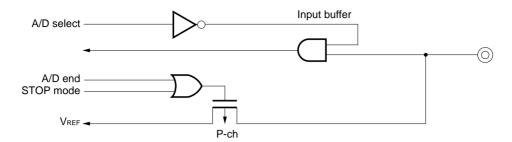



(2) POC₀/ADC₀ - POC₃/ADC₃

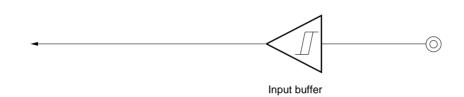

(3) P0D₃/TM1OUT, P0D₁/SO

(4) P0D₂/SI, P0D₀/SCK

(5) P0E₀ - P0E₃



(6) P0Fo/RLS



NEC

(7) P0F1/VREF

(8) RESET, INT

1.4 HANDLING UNUSED PINS

Connect unused pins at the normal operation mode as follows:

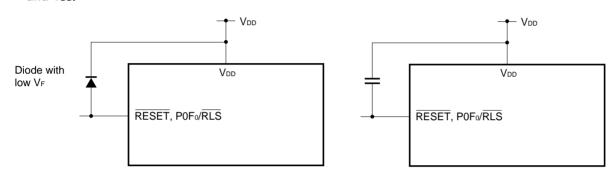
		Pin	Conditions	and handling
Pin			Internal	External
		Pull-up resistors that can be specified with the software are incorporated.	Leave open.	
			Connect to V _{DD} or ground through resistors for each pin.Note 1	
		P0F ₁	_	Connect directly to VDD or ground.
		P0F ₀ Note 2	_	Connect directly to ground.
	Output mode	P0A, P0B, P0C (CMOS ports)	_	Leave open.
	P0D (N-ch open- drain port) Outputs low level.		Outputs low level.	
		P0E (N-ch open- drain port)	Outputs low level without pull-up resistors that can be specified with the software.	
			Outputs low level with pull-up resistors that can be specified with the software.	
Ext	ernal inter	rupt (INT)	_	Connect directly to VDD or ground.

Table 1-1 Handling Unused Pins

- **Notes 1.** When a pin is pulled up to V_{DD} (connected to V_{DD} through a resistor) or pulled down to ground (connected to ground through a resistor) outside the chip, take the driving capacity and maximum current consumption of a port into consideration. When using high-resistance pull-up or pull-down resistors, apply appropriate countermeasures to ensure that noise is not attracted by the resistors. Although the optimum pull-up or pull-down resistor varies with the application circuit, in general, a resistor of 10 to 100 kilohms is suitable.
 - 2. Since the P0F₀/RLS pin is also used as the V_{PP} pin for writing and verifying the program memory, connect directly to ground when the pin is not used.
- Caution To fix the I/O mode, pull-up resistors that can be specified with the software, and output level of a pin, it is recommended that they should be specified repeatedly within a loop in a program.

1.5 NOTES ON USE OF THE RESET AND POF0/RLS PINS (ONLY AT THE NORMAL OPERATION MODE)

The RESET pin can be used as the test mode selection pin for testing the internal operation of the μ PD17P149 (IC test), besides the usage shown in **Section 1.1**.


The P0F₀/RLS pin can be used as the V_{PP} pin in the program memory write/verify mode.

Applying a voltage exceeding V_{DD} to the $\overrightarrow{\text{RESET}}$ or P0F₀/ $\overrightarrow{\text{RLS}}$ pin causes the μ PD17P149 to enter the test mode or program memory write/verify mode. When noise exceeding V_{DD} comes in during normal operation, the device may not operate normally.

For example, if the wiring from the RESET or P0F₀/RLS pin is too long, noise may be induced on the wiring, causing this mode switching.

When installing the wiring, lay the wiring in such a way that noise is suppressed as much as possible. If noise yet arises, use an external part to suppress it as shown below.

- Connect a diode with low VF between the pin and VDD.
- Connect a capacitor between the pin and V_{DD} .

2. DIFFERENCES BETWEEN THE μ PD17145, μ PD17147, μ PD17149, AND μ PD17P149

The μ PD17P149 is a one-time PROM version of the μ PD17149, in which the internal mask ROM is replaced with a one-time PROM.

Table 2-1 lists the differences between the μ PD17145, μ PD17147, μ PD17149, and μ PD17P149.

The μ PD17P149 has the same CPU functions and internal peripheral hardwares as those of μ PD17145, μ PD17147, and μ PD17149 except for its program memory, program size, address register size, and mask option.

Part of electrical characteristics is also different between those products. For details of the electrical characteristics, refer to the data sheet of each product.

Item	μPD17145	μPD17147	μPD17149	μPD17P149		
Program memory (ROM)	Masked ROM	Masked ROM				
				-0FFFH)		
Program counter (PC)	10 bits	11 bits	12	bits		
Address register (AR)	_					
Address stack register	_					
Pull-up resistors of P0F, RESET, and INT pins	Mask option	Not provided				
Internal POC circuit	Mask option		Not provided			
V _{PP} pin and operating mode selection pin	Not provided			Provided		
Quality grade	 Standard μPD17145 Special μPD17145 (A) μPD17145 (A1) 	 Standard μPD17147 Special μPD17147 (A) μPD17147 (A1) 	 Standard μPD17149 Special μPD17147 (A) μPD17147 (A1) 	Standard		
Electrical characteristics	Partially differs between these products. Refer to the data sheet of each product for details.					

Table 2-1 Differences between the μ PD17145, μ PD17147, μ PD17149, and μ PD17P149

Caution Although a PROM product is highly compatible with a mask ROM product in respect of functions, they differ in internal ROM circuits and part of electrical characteristics. Before changing the PROM product to the mask ROM product in an application system, evaluate the system carefully using the mask ROM product.

3. WRITING TO AND VERIFYING ONE-TIME PROM (PROGRAM MEMORY)

The μ PD17P149's internal program memory consists of a 4096 \times 16 bit one-time PROM.

Writing to the one-time PROM or verifying the contents of the PROM is accomplished using the pins shown in Table 3-1. Note that address inputs are not used; instead, the address is updated using the clock input from the CLK pin.

Caution The P0F₀/RLS/V_{PP} pin is used as the V_{PP} pin when writing to program memory or verifying its contents. If an voltage equal to or more than V_{DD} + 0.3 V is applied to the P0F₀/RLS pin in normal operation mode, the microcontroller may cause a system crash. Protect the pins from high voltages.

Table 3-1 Pins Used When Writing to Program Memory or Verifying Its Contents

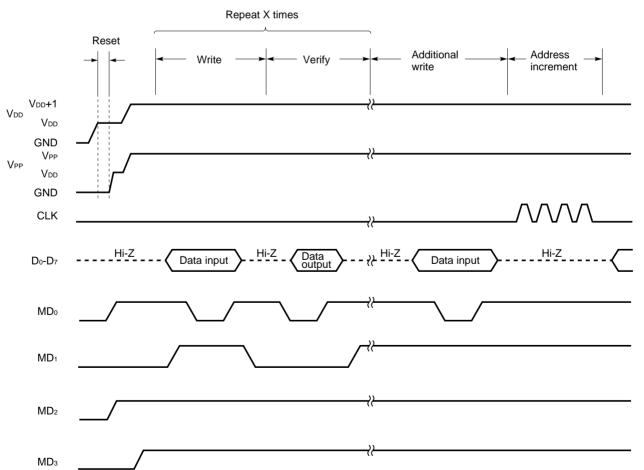
Pin	Function
Vpp	Pin for applying programming supply voltage. Voltage (+12.5 V) is applied to this pin.
Vdd	Positive power supply pin. +6 V is applied to this pin.
CLK	Input pin for address update clocks. Input of four pulses to this pin updates the address of the program memory.
MDo - MD3	Input pins that select an operation mode
D0 - D7	Input/output pins for 8-bit data

3.1 PROGRAM MEMORY WRITE/VERIFY MODES

If +6 V is applied to the V_{DD} pin and +12.5 V is applied to the V_{PP} pin after a certain duration of reset status (V_{DD} = 5 V, $\overline{\text{RESET}}$ = 0 V), the μ PD17P149 enters program memory write/verify mode. A specific operating mode is then selected by setting the MD₀ through MD₃ pins as follows. The X_{OUT} pin must be left open. Connect each pin not listed in Table 3-1 (including the $\overline{\text{RESET}}$ pin) to ground through a resistor.

Table 3-2	Specification o	of Operating	Modes
-----------	-----------------	--------------	-------

	Operating mode specification				Operating mode		
Vpp	Vdd	MD ₀	MD1	MD ₂	MD3		
		Н	L	Н	L	Program memory address clear mode	
+12.5 V	+6 V	L	Н	Н	Н	Write mode	
+12.3 V +0 V	10 0	L	L	Н	Н	Verify mode	
		Н	×	Н	Н	Program inhibit mode	


Remark ×: Don't care. L (low) or H (high)

3.2 WRITING TO PROGRAM MEMORY

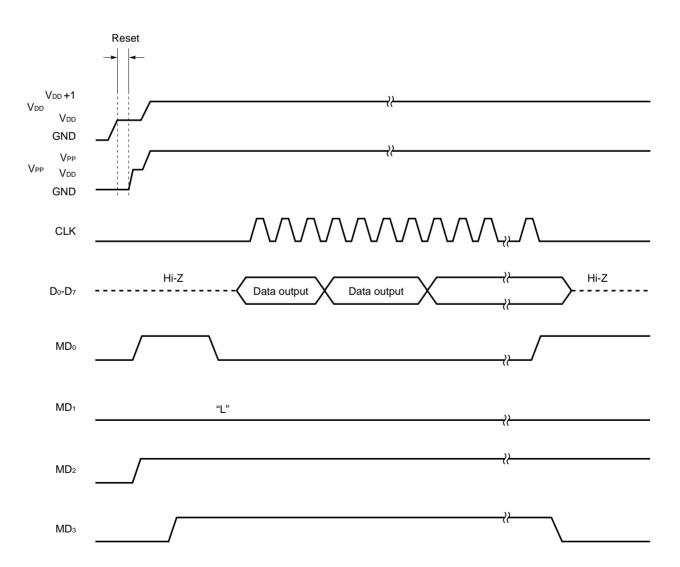
The procedure for writing to program memory is described below.

- (1) Connect all unused pins to GND through resistors (the Xou⊤ pin is left open). Apply a low-level signal to the CLK pin.
- (2) Apply 5 V to VDD and apply a low-level signal to the VPP pin.
- (3) Wait 10 μ s. Then apply 5 V to VPP.
- (4) Set the mode selection pins to program memory address clear mode.
- (5) Apply 6 V to VDD and 12.5 V to VPP.
- (6) Select program inhibit mode.
- (7) Write data in 1-ms write mode.
- (8) Select program inhibit mode.
- (9) Select verify mode. If the write operation is found successful, proceed to step (10). If the operation is found unsuccessful, repeat steps (7) to (9).
- (10) Perform additional write for X (number of repetitions of steps (7) to (9)) \times 1 ms.
- (11) Select program inhibit mode.
- (12) Increment the program memory address by one on reception of four pulses on the CLK pin.
- (13) Repeat steps (7) to (12) until the last address is reached.
- (14) Select program memory address clear mode.
- (15) Apply 5 V to the VDD and VPP pins.
- (16) Turn power off.

A timing chart for program memory writing steps (2) to (12) is shown in Fig. 3-1.

Fig. 3-1 Timing Chart for Program Memory Writing Steps

NEC


3.3 READING PROGRAM MEMORY

- (1) Connect all unused pins to GND through resistors (the Xout pin is left open). Apply a low-level signal to the CLK pin.
- (2) Apply 5 V to V_{DD} and apply a low-level signal to the V_{PP} pin.
- (3) Wait 10 $\mu s.$ Then apply 5 V to VPP.
- (4) Set the mode selection pins to program memory address clear mode.
- (5) Apply 6 V to V_DD and 12.5 V to V_PP.
- (6) Select program inhibit mode.
- (7) Select verify mode. Data is output sequentially one address at a time for every four input clock pulses on the CLK.
- (8) Select program inhibit mode.
- (9) Select program memory address clear mode.
- (10) Apply 5 V to the VDD and VPP pins.
- (11) Turn power off.

*

A timing chart for program memory reading steps (2) to (9) is shown below.

Fig. 3-2 Timing Chart for Program Memory Reading Steps

4. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (TA = 25 °C)

Parameter	Symbol	Conditions		Rated value	Unit			
Supply voltage	Vdd				-0.3 to +7.0	V		
PROM supply voltage	Vpp				-0.3 to +13.5	V		
A/D converter reference voltage	Vref				-0.3 to V _{DD} + 0.3	V		
Input voltage	Vı	P0A, P0B, P0C, P0D, P0E, P0F, INT, RESET, and XIN					-0.3 to V _{DD} + 0.3	V
Output voltage	Vo			-0.3 to Vpp + 0.3	V			
High-level output current	_{OH} Note	Each of P0A, P0B, and P0C pins		Peak value	-15	mA		
				rms	-7.5	mA		
		Total of P0A, P0B,		Peak value	-30	mA		
		and P0C pins		rms	-15	mA		
Low-level output current	_{OL} Note	Each of P0A, P0B, and P0C		Peak value	15	mA		
				rms	7.5	mA		
		Each of P0D and P0E		Peak value	30	mA		
				rms	15	mA		
		Total of P0A, P0B, P0C, P0D, and P0E pins		Peak value	100	mA		
				rms	50	mA		
Operating ambient temperature	TA				-40 to +85	°C		
Storage temperature	Tstg				-65 to +150	°C		
Allowable dissipation	Pd	TA = 85 °C	28-pin plastic shrink DIP		140	mW		
		28-pin p		astic SOP	85	mW		

Note Calculate a root-mean-square value as follows: [rms value] = [peak value] $\times \sqrt{duty}$.

Caution Absolute maximum ratings are rated values beyond which some physical damages may be caused to the product; if any of the parameters in the table above exceeds its rated value even for a moment, the quality of the product may deteriorate. Be sure to use the product within the rated values.

RECOMMENDED POWER VOLTAGE RANGE (TA = -40 to +85 °C)

Parameter	Symbol	Conditions			Тур.	Max.	Unit
Supply voltage	Vdd	CPU	$f_x = 400 \text{ kHz to } 2 \text{ MHz}$	2.7		5.5	V
	· · · · · · · · · · · · · · · · · · ·	(except A/D con-	$f_x = 400 \text{ kHz to } 4 \text{ MHz}$	3.6		5.5	V
		verter)	fx = 400 kHz to 8 MHz	4.5		5.5	V
		A/D converter	Absolute accuracy: ±1.5 LSB,	4.0		5.5	V
			$2.5~V \leq V_{\text{REF}} \leq V_{\text{DD}}$				

DC CHARACTERISTICS (VDD = 2.7 to 5.5 V, T_A = -40 to +85 °C)

Parameter	Symbol	Conditions			Min.	Тур.	Max.	Unit
High-level input	VIH1	P0A, P0B, P0C, P0D, P0E, and P0F			0.7Vdd		Vdd	V
voltage	VIH2	RESET, SCK, S	0.8Vdd		Vdd	V		
	Vінз	Xin	Vdd - 0.5		Vdd	V		
Low-level input voltage	VIL1	P0A, P0B, P0C	0		0.3Vdd	V		
	VIL2	RESET, SCK, S	0		0.2VDD	V		
	VIL3	Xin	0		0.4	V		
High-level output voltage	Vон	Voн P0A, P0B, and P0C		4.5 - V _{DD} - 5.5 Іон = -1.0 mA	Vdd - 0.3			V
				2.7 - V _{DD} < 4.5 Іон = -0.5 mA	Vdd - 0.3			V
Low-level output voltage	Vol1	P0A, P0B, P0C, P0D, and P0E		4.5 - V _{DD} - 5.5 Iol = 1.0 mA			0.3	V
				2.7 - V _{DD} < 4.5 Io∟ = 0.5 mA			0.3	V
	Vol2			4.5 - VDD - 5.5			1.0	V
				2.7 - V _{DD} < 4.5			2.0	V
High-level input leakage current	Цин	P0A, P0B, P0C,			3	μΑ		
Low-level input leakage current	Lu	P0A, P0B, P0C, P0D, P0E, P0F, RESET, and INT $V_{IN} = 0 V$					-3	μΑ
High-level output leakage current	Ігон	P0A, P0B, P0C, P0D, and P0E Vout = VDD					3	μΑ
Low-level output leakage current	ILOL	P0A, P0B, P0C, P0D, and P0E Vout = 0 V					-3	μΑ
Built-in pull-up resistanceNote 1	Rpull	P0A, P0B, and P0E			50	100	200	kΩ
		P0D			3	10	30	kΩ
Power supply		Normal $f_x = 8.0 \text{ MHz}, V_{DD} = 5 \text{ V} \pm 10\%$				5.5	8.0	mA
currentNote 2			fx = 4.0 MHz, VDD = 5 V ±10%			3.3	5.5	mA
			$fx = 2.0 \text{ MHz}, \text{ V}_{DD} = 3 \text{ V} \pm 10\%$			1.0	2.5	mA
			fx = 400 kHz	$V_{DD} = 5 V \pm 10\%$		2.0	4.7	mA
				$V_{DD} = 3 V \pm 10\%$		0.7	2.4	mA
	IDD2	IDD2 HALT mode	$fx = 8.0 \text{ MHz}, \text{ V}_{\text{DD}} = 5 \text{ V} \pm 10\%$			3.5	5.0	mA
		$f_x = 4.0 \text{ MHz}, V_{DD} = 5 \text{ V} \pm 10\%$			2.7	4.1	mA	
			$f_x = 2.0 \text{ MHz}, \text{ V}_{\text{DD}} = 3 \text{ V} \pm 10\%$			0.8	2.0	mA
						1.8	3.8	mA
						0.6	2.2	mA
	IDD3	STOP mode				12	50	μΑ
						10	45	μA

Notes 1. Pull-up resistors are not incorporated for the P0F, RESET, and INT pins.

2. This current excludes the current which flows through the A/D converter and built-in pull-up resistors.