

MOS INTEGRATED CIRCUIT μ PD17P709

4-BIT SINGLE-CHIP MICROCONTROLLER WITH BUILT-IN HARDWARE DEDICATED TO DIGITAL TUNING SYSTEMS

★ The μ PD17P709 is produced by replacing the built-in masked ROM of the μ PD17704Note, μ PD17705Note, μ PD17707, μ PD17708, and μ PD17709 with a one-time PROM.

The μ PD17P709 allows programs to be written once, so that the μ PD17P709 is suitable for preproduction in μ PD17704, μ PD17705, μ PD17707, μ PD17708, or μ PD17709 system development or low-volume production.

When reading this document, also refer to the publications on the μ PD17704, μ PD17705, μ PD17707, μ PD17708, or μ PD17709.

Note Under development

The electrical characteristics (including power supply currents) and PLL analog characteristics of the μ PD17P709 differ from those of the μ PD17704, μ PD17705, μ PD17707, μ PD17708, and μ PD17709. In high-volume application set production, carefully check those differences.

FEATURES

- Compatible with the μPD17704, μPD17705, μPD17707, μPD17708, and μPD17709
- Built-in one-time PROM : 32K bytes (16384 × 16 bits)
- Supply voltage : $V_{DD} = 5 V \pm 10\%$

ORDERING INFORMATION

 Part number
 Package

 μPD17P709GC-3B9
 80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch)

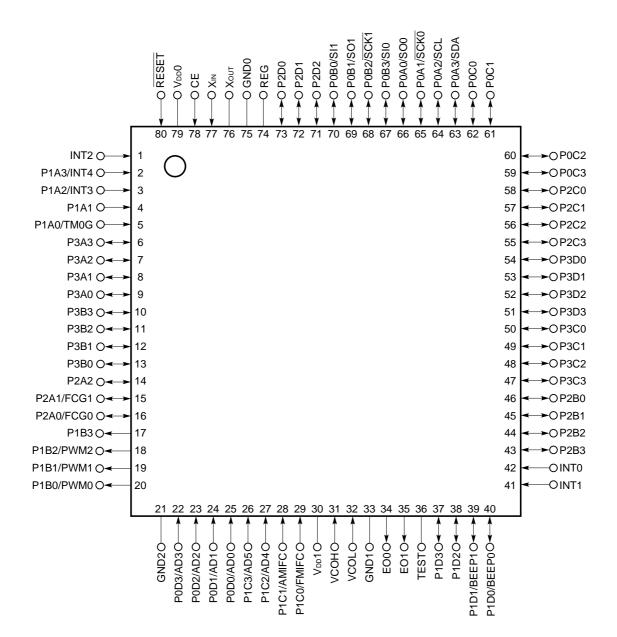
The information in this document is subject to change without notice.

★ FUNCTION OVERVIEW

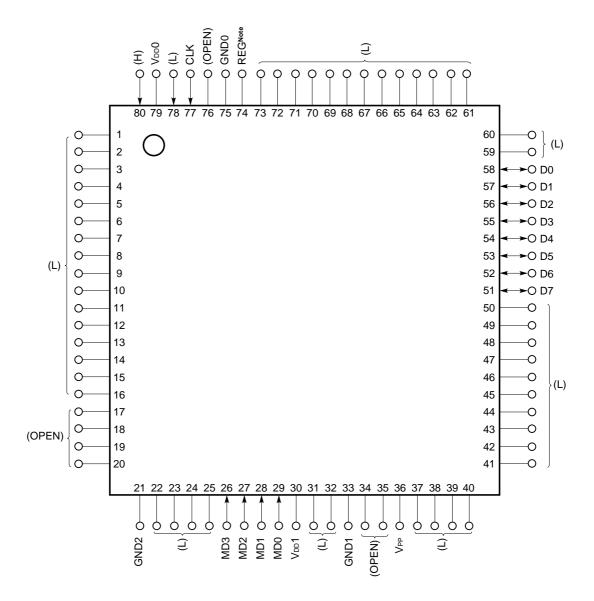
am memory (ROM) ral-purpose data ory (RAM) ction execution time ral-purpose ports	8192 × 16 bits (masked ROM) 672 × 4 bits 1.78 μ s (with 4.5- • I/O ports : • Input ports :	12288 × 16 bits (masked ROM) MHz crystal)		16384 × 16 bit (masked ROM		16384 × 16 bits (one-time PROM)		
ory (RAM) ction execution time ral-purpose ports	1.78 μs (with 4.5- • I/O ports :	MHz crystal)	1120 × 4 bits	I	1776 × 4 bits			
ral-purpose ports	• I/O ports :	MHz crystal)						
	• Output ports :							
level		4 levels	ted by softwa	e)				
upt		• •						
 8-bit timer with gate counter (clock: 1 k, 2 k, 10 k, 100 kHz) : 8-bit timer (clock: 1 k, 2 k, 10 k, 100 kHz) : 					: 1 channel : 1 channel : 2 channels : 1 channel			
onverter	8 bits \times 6 channels (Hardware or software mode can be selected.)							
	3 channels (8-bit or 9-bit resolution, selected by software.) Output frequency: 4.4 kHz, 440 Hz (8-bit PWM) 2.2 kHz, 220 Hz (9-bit PWM)							
interface	2 systems (3 channels) • 3-wire serial I/O : 2 channels • 2-wire serial I/O/I ² C bus : 1 channel							
Frequency division system			(VCOL pin (HF mode) : 1	0 to 40 MHz)			
Reference Can be set to one of 13 frequencies frequency (1, 1.25, 2.5, 3, 5, 6.25, 9, 10, 12.5, 18, 20, 25, or 50 kHz).								
Charge pump 2 error output pins (EO0 and EO1)								
Phase comparator	r Unlock detection is enabled by software.							
	 Intermediate frequency measurement P1C0/FMIFC pin : 10 to 11 MHz in FMIF mode 0.4 to 0.5 MHz in AMIF mode P1C1/AMIFC pin : 0.4 to 0.5 MHz in AMIF mode External gate width measurement 							
	onverter onverter 1) interface Frequency division system Reference frequency Charge pump	 DBF stack External : 6 (C Internal : 6 (till Internal : 6 (till Internal : 6 (till S 5 channels Basic timer (close 8-bit timer with 8-bit timer (close 8-bit timer, alsoe onverter 8 bits × 6 channels 8-bit timer, alsoe onverter 3 channels (8-bit Output frequency interface 2 systems (3 chanels (8-bit) Output frequency S-wire serial I/C 2-wire serial I/C 2-wire serial I/C Pulse swallow system Reference Can be set to one frequency (1, 1.25, 2.5, 3, 5 Charge pump 2 error output pin Phase comparator Unlock detection Phase comparator Unlock detection Phase comparator 	upt• External : 6 (CE rising edge ar • Internal : 6 (timers 0 to 3, series • Basic timer (clock: 10, 20, 50, • 8-bit timer with gate counter (cl • 8-bit timer with gate counter (cl • 8-bit timer, also used for PWMonverter8 bits × 6 channels (Hardware or onverter 0)onverter3 channels (8-bit or 9-bit resolution Output frequency : 4.4 kHz, 440 In 2.2 kHz, 220 In 2.2 kHz, 220 In 3-wire serial I/O : 2 on • 2-wire serial I/O/I2C bus : 1 on • 3-wire serial I/O/I2C bus : 1 on • 2-wire serial I/O/I2C bus : 1 on • Direct frequency division systemReference frequency (1, 1.25, 2.5, 3, 5, 6.25, 9, 10, 12)Charge pump Phase comparator2 error output pins (EO0 and EO1 Phase comparatorUnlock detection is enabled by some on ediate frequency er• Intermediate frequency measure P1C0/FMIFC pin : 10 to 11 M 0.4 to 0.5 • External gate width measureme	 DBF stack : 4 levels (operated by softward interfaces of the second secon	 DBF stack : 4 levels (operated by software) upt External : 6 (CE rising edge and INT0 to INT4) Internal : 6 (timers 0 to 3, serial interfaces 0 and 1) s channels Basic timer (clock: 10, 20, 50, 100 Hz) 8-bit timer with gate counter (clock: 1 k, 2 k, 10 k, 100 kHz) 8-bit timer (clock: 1 k, 2 k, 10 k, 100 kHz) 8-bit timer (clock: 1 k, 2 k, 10 k, 100 kHz) 8-bit timer, also used for PWM (clock: 440 Hz, 4.4 kHz) onverter 3 channels (8-bit or 9-bit resolution, selected by software.) Output frequency: 4.4 kHz, 440 Hz (8-bit PWM) 2.2 kHz, 220 Hz (9-bit PWM) interface 2 systems (3 channels) 3-wire serial I/O : 2 channels 2-wire serial I/O : 2 channels 2-wire serial I/O/12C bus : 1 channel Frequency Direct frequency division system (VCOL pin (MF mode) : 0 Pulse swallow system (VCOL pin (HF mode) : 1 (VCOH pin (VHF mode): 6) Reference frequency (1, 1.25, 2.5, 3, 5, 6.25, 9, 10, 12.5, 18, 20, 25, or 50 kHz). Charge pump 2 error output pins (EO0 and EO1) Phase comparator Unlock detection is enabled by software. nediate frequency entermediate frequency measurement P1C0/FMIFC pin : 10 to 11 MHz in FMIF mode 0.4 to 0.5 MHz in AMIF mode P1C1/AMIFC pin : 0.4 to 0.5 MHz in AMIF mode 	• DBF stack : 4 levels (operated by software)upt• External : 6 (CE rising edge and INT0 to INT4) • Internal : 6 (timers 0 to 3, serial interfaces 0 and 1)s5 channels • Basic timer (clock: 10, 20, 50, 100 Hz) : 1 channel • 8-bit timer with gate counter (clock: 1 k, 2 k, 10 k, 100 kHz) : 1 channel • 8-bit timer (clock: 1 k, 2 k, 10 k, 100 kHz) : 2 channels • 8-bit timer, also used for PWM (clock: 440 Hz, 4.4 kHz) : 1 channel • 8-bit timer, also used for PWM (clock: 440 Hz, 4.4 kHz) : 1 channelonverter8 bits × 6 channels (Hardware or software mode can be selected.)onverter3 channels (8-bit or 9-bit resolution, selected by software.) Output frequency: 4.4 kHz, 440 Hz (8-bit PWM) · 2.2 kHz, 220 Hz (9-bit PWM)interface2 systems (3 channels) · 3-wire serial I/O : 2 channels · 2-wire serial I/O/I2C bus : 1 channelFrequency division system• Direct frequency division system (VCOL pin (MF mode) : 0.5 to 3 MHz) · VCOL pin (VHF mode) : 60 to 130 MHz)Reference frequencyCan be set to one of 13 frequencies (VCOL pin (VHF mode) : 60 to 130 MHz)Charge pump2 error output pins (EO0 and EO1)Phase comparatorUnlock detection is enabled by software.hediate frequency er• Intermediate frequency measurement P1C0/FMIFC pin : 10 to 11 MHz in FMIF mode 0.4 to 0.5 MHz in AMIF mode P1C1/AMIFC pin : 0.4 to 0.5 MHz in AMIF mode • External gate width measurement		

Note Under development

(2/2)


~							
Item	μ PD17704Note	μPD17705 Note	μPD17707	μPD17708	μPD17709	μPD17P709	
BEEP output	2 Output frequency: 1 kHz, 3 kHz, 4 kHz, 6.7 kHz (BEEP0 pin) 67 kHz, 200 Hz, 3 kHz, 4 kHz (BEEP1 pin)						
Reset	 Power-on reset (when the power is turned on) Reset using the RESET pin Watchdog timer reset Can be set only once at power-on: 65,536 instructions, 131,072 instructions, or non-use can be selected. Stack pointer overflow/underflow reset Can be set only once at power-on: the interrupt stack or address stack can be selected. CE reset (CE pin: low → high) A CE reset delay timing can be set. Power-failure detection function 						
Standby	Clock stop mode (STOP)Halt mode (HALT)						
Supply voltage	 PLL operation : V_{DD} = 4.5 to 5.5 V CPU operation : V_{DD} = 3.5 to 5.5 V 						
Package	80-pin plastic QFF	P (14 $ imes$ 14 mm, 0	.65-mm pitch)				

Note Under development


PIN CONFIGURATION (TOP VIEW)

80-pin plastic QFP (14 \times 14 mm, 0.65-mm pitch) μ PD17P709GC-3B9

(1) Normal operation mode

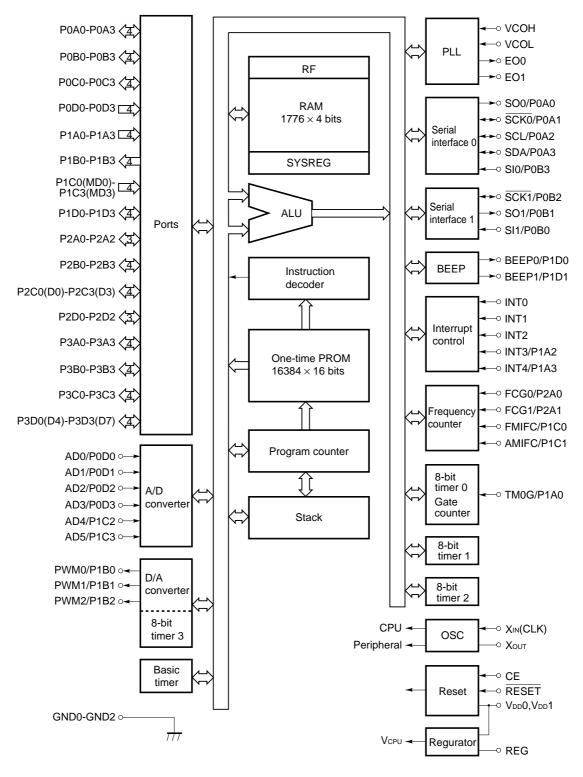
(2) PROM programming mode

Note Connect to the same potential as VDD.

Caution The parentheses above indicate the handling of the pins not used in PROM programming mode.

L : Connect each pin to GND through a resistor (470 ohms).

H : Connect each pin to VDD through a resistor (470 ohms).


OPEN : Leave each pin open.

NEC

PIN NAMES

AD0-AD5	:	A/D converter inputs	P2B0-P2B3	:	Port 2B
AMIFC	:	AM frequency counter input	P2C0-P2C3	:	Port 2C
BEEP0, BEEP1	:	Beep outputs	P2D0-P2D2	:	Port 2D
CE	:	Chip enable	P3A0-P3A3	:	Port 3A
CLK	:	Address update clock input	P3B0-P3B3	:	Port 3B
D0-D7	:	Data I/O	P3C0-P3C3	:	Port 3C
EO0, EO1	:	Error outputs	P3D0-P3D3	:	Port 3D
FCG0, FCG1	:	Frequency counter gate inputs	REG	:	CPU regulator
FMIFC	:	FM frequency counter input	RESET	:	Reset input
GND0-GND2	:	Ground 0 to 2	SCK0, SCK1	:	3-wire serial clock I/O
INT0-INT4	:	External interrupt inputs	SCL	:	2-wire serial clock I/O
MD0-MD3	:	Operating mode selection	SDA	:	2-wire serial data I/O
PWM0-PWM2	:	D/A converter outputs	SI0, SI1	:	3-wire serial data input
P0A0-P0A3	:	Port 0A	SO0, SO1	:	3-wire serial data output
P0B0-P0B3	:	Port 0B	TEST	:	Test input
P0C0-P0C3	:	Port 0C	TM0G	:	Timer 0 gate input
P0D0-P0D3	:	Port 0D	VCOH	:	Local oscillation high input
P1A0-P1A3	:	Port 1A	VCOL	:	Local oscillation low input
P1B0-P1B3	:	Port 1B	Vdd0, Vdd1	:	Power supply
P1C0-P1C3	:	Port 1C	Vpp	:	Program voltage application
P1D0-P1D3	:	Port 1D	Xin, Xout	:	Main clock oscillation
P2A0-P2A2	:	Port 2A			

BLOCK DIAGRAM

Remark Pins enclosed in parentheses are used in PROM programming mode.

NEC

CONTENTS

	1.	PIN F	UNCTIONS	9
		1.1	NORMAL OPERATION MODE	9
		1.2	PROM PROGRAMMING MODE	13
*		1.3	EQUIVALENT CIRCUIT OF PINS	14
		1.4	HANDLING UNUSED PINS	19
\star		1.5	NOTES ON USE OF THE CE, INT0-INT4, AND RESET PINS (ONLY IN NORMAL	
			OPERATION MODE)	21
*		1.6	NOTES ON USE OF THE TEST PIN (ONLY IN NORMAL OPERATION MODE)	21
	2.	ONE-	TIME PROM (PROGRAM MEMORY) WRITE, READ, AND VERIFICATION	22
		2.1	OPERATING MODES FOR PROGRAM MEMORY WRITE, READ, AND VERIFICATION	23
		2.2	PROGRAM MEMORY WRITE PROCEDURE	24
		2.3	PROGRAM MEMORY READ PROCEDURE	25
	3.	ELEC	TRICAL CHARACTERISTICS	26
	4.	PAC	AGE DRAWING	31
*	5.	RECO	OMMENDED SOLDERING CONDITIONS	32
	AP	PENDI	X DEVELOPMENT TOOLS	33

***** 1. PIN FUNCTIONS

1.1 NORMAL OPERATION MODE

Pin No.	Symbol		Output format					
1 41 42	INT2 INT1 INT0	Edge-detected ve can be selected.	Edge-detected vectored interrupt. Either a rising edge or falling edge can be selected.					
2 3 4 5	P1A3/INT4 P1A2/INT3 P1A1 P1A0/TM0G	Port 1A. Externa P1A3-P1A0 4-bit input po INT4, INT3 Edge-detect TM0G Gate input fo	_					
			When reset	I	When the clock			
		Power-on reset	WDT&SP reset	CE reset	is stopped	-		
		Input (P1A3-P1A0)	Input (P1A3-P1A0)	Held	Held			
6 to	P3A3 to	4-bit I/O port. Input/output can I	CMOS push-pull					
9	P3A0	When reset			When the clock	-		
		Power-on reset	WDT&SP reset	CE reset	is stopped	_		
		Input	Input	Held	Held			
10 to	P3B3 to	4-bit I/O port. Input/output can I	be specified in 4-bit	units.		CMOS push-pull		
13	P3B0	When reset When			When the clock	-		
		Power-on reset	WDT&SP reset	CE reset	is stopped			
		Input	Input	Held	Held			
14 15 16	P2A2 P2A1/FCG1 P2A0/FCG0	 P2A2-P2A0 3-bit I/O port 	can be specified bit			CMOS push-pull		
			When reset		When the clock	-		
		Power-on reset	WDT&SP reset	CE reset	is stopped			
		Input (P2A2-P2A0)	Input (P2A2-P2A0)	Held (P2A2-P2A0)	Held (P2A2-P2A0)			

NEC

Pin No.	Symbol		Function				
17 18 to 20	P1B3 P1B2/PWM2 to P1B0/PWM0	Port 1B. D/A converter output • P1B3-P1B0 • 4-bit output port • PWM2-PWM0 • 8-bit or 9-bit D/A converter output				N-ch open-drain (12-V withstand voltage)	
		Power-on reset	When reset WDT&SP reset	CE reset	When the clock is stopped		
		Low-level output (P1B3-P1B0)	Low-level output (P1B3-P1B0)	Held	Held (P1B3-P1B0)	_	
21 33 75	GND2 GND1 GND0	Ground	Ground				
22 to 25	P0D3/AD3 to P0D0/AD0	• AD3-AD0				_	
			When reset	When the clock			
		Power-on reset Input with pull- down resistors (P0D3-P0D0)	WDT&SP reset Input with pull- down resistors (P0D3-P0D0)	CE reset Held	is stopped Held	-	
26 27 28 29	P1C3/AD5 P1C2/AD4 P1C1/AMIFC P1C0/FMIFC	 P1C3-P1C0 4-bit input por AD5, AD4 	for 8-bit-resolution			_	
			When reset		When the clock	_	
		Power-on reset	WDT&SP reset	CE reset	is stopped		
		Input (P1C3-P1C0)	Input (P1C3-P1C0)	 P1C3/AD5, P1C2/AD4 Held P1C1/AMIFC, P1C0/FMIFC Input (P1C1, P1C0) 	 P1C3/AD5, P1C2/AD4 Held P1C1/AMIFC, P1C0/FMIFC Input (P1C1, P1C0) 		

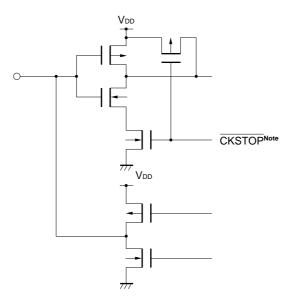
Pin No.	Symbol		Fur	nction		Output format		
30 79	Vdd1 Vdd0	When the CFWhen only the	 Power supply. Apply the same voltage to the V_{DD}1 and V_{DD}0 pins. When the CPU and peripheral functions are operating: 4.5 to 5.5 V When only the CPU is operating: 3.5 to 5.5 V When the clock is stopped: 2.2 to 5.5 V 					
31 32	VCOH VCOL	 VCOH Active when down. VCOL Active when pulled down. 	 Active when VHF mode is selected by software. Otherwise, pulled down. VCOL Active when HF or MW mode is selected by software. Otherwise, 					
34 35	EO0 EO1	result of phase co	harge pump of the omparison between ence frequency is	n the divided loca		CMOS tristate		
			When reset	1	When the clock			
		Power-on reset	WDT&SP reset	CE reset	is stopped			
		High-impedance output	High-impedance output	High-impedance output	High-impedance output			
36	TEST	Test input pin. Be sure to conne	ct it to GND.			_		
37 38 39 40	P1D3 P1D2 P1D1/BEEP1 P1D0/BEEP0	 P1D3-P1D0 4-bit I/O port Input/output of 	 4-bit I/O port Input/output can be specified bit by bit. BEEP1, BEEP0					
			When reset	-	When the clock			
		Power-on reset	WDT&SP reset	CE reset	is stopped			
		Input (P1D3-P1D0)	Input (P1D3-P1D0)	Held (P1D3-P1D0)	Held (P1D3-P1D0)			
43 to	P2B3 to	4-bit I/O port. Input/output can b	CMOS push-pull					
46 P2B0			When reset		When the clock			
		Power-on reset	WDT&SP reset	CE reset	is stopped			
		Input	Input	Held	Held			
47 to	P3C3 to	4-bit I/O port. Input/output can b	CMOS push-pull					
50	P3C0		When reset		When the clock			
		Power-on reset	WDT&SP reset	CE reset	is stopped			
		Input	Input	Held	Held			

NEC

Pin No.	Symbol		Output format				
51 to 54	P3D3 to P3D0	4-bit I/O port. Input/output can b Power-on reset Input	When reset WDT&SP reset	units. CE reset Held	When the clock is stopped Held	CMOS push-pull	
55 to 58	P2C3 to P2C0	4-bit I/O port.	when reset WDT&SP reset		When the clock is stopped Held	CMOS push-pull	
59 to 62	P0C3 to P0C0	4-bit I/O port.	When reset WDT&SP reset		When the clock is stopped Held	CMOS push-pull	
63 64	P0A3/SDA	POA or POB. Ser	ial interface I/O			N-ch open-drain	
65 66 67 68 69 70	P0A2/SCL P0A1/SCK0 P0A0/SO0 P0B3/SI0 P0B2/SCK1 P0B1/SO1 P0B0/SI1	 4-bit I/O port Input/output of P0B3-P0B0 4-bit I/O port Input/output of SDA, SCL Serial data a of serial inter SCK0, SO0, SI Serial clock I 3-wire serial SCK1, SO1, SI 	 4-bit I/O port Input/output can be specified bit by bit. SDA, SCL Serial data and serial clock I/O when the 2-wire serial I/O or I²C bus of serial interface 0 is selected. SCK0, SO0, SI0 Serial clock I/O, serial data output, and serial data input when the 3-wire serial I/O of serial interface 0 is selected. SCK1, SO1, SI1 Serial clock I/O, serial data output, and serial data input when the 				
		Davida en recet	When reset	CE react	When the clock is stopped		
		Power-on reset Input (P0A3-P0A0 P0B3-P0B0)	WDT&SP reset Input (P0A3-P0A0 P0B3-P0B0)	CE reset Held (P0A3-P0A0 P0B3-P0B0)	Held (P0A3-P0A0 P0B3-P0B0)		
71 to 73	P2D2 to P2D0	3-bit I/O port. Input/output can be specified bit by bit. When reset When the clock Power-on reset WDT&SP reset CE reset is stopped				CMOS push-pull	
		Power-on reset Input	WDT&SP reset	CE reset Held	Held		

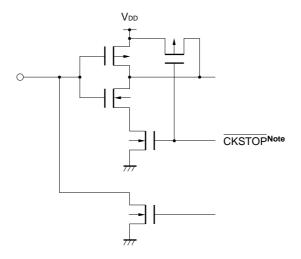
Pin No.	Symbol	Function	Output format
74	REG	CPU regulator. Use 0.1-µF capacitor to connect it to GND.	—
76 77	Xout Xin	A crystal is connected to these pins.	—
78	CE	 Input for device operation selection, CE reset, and interrupt signals Device operation selection When CE is high, the PLL frequency synthesizer can be operated. When CE is low, the PLL frequency synthesizer is automatically disabled by the device. CE reset Setting CE from low to high resets the device upon the detection of a rising edge of the internal basic timer setting pulse. A reset timing delay can also be specified. Interrupt A vectored interrupt occurs upon the detection of a falling edge of the input signal. 	
80	RESET	Reset input	_

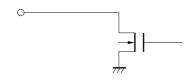
1.2 PROM PROGRAMMING MODE


Pin No.	Symbol	Function	Output format
26	MD3	Input for operating mode selection for program memory write, read, or	_
to 29	to MD0	verification	
21 33 75	GND2 GND1 GND0	Ground	_
36	Vpp	Pin to which program voltage is applied during program memory write, read, or verification. +12.5 V is applied.	_
30 79	Vdd1 Vdd0	Power supply pins. +6 V is applied during program memory write, read, or verification.	_
51 to 58	D7 to D0	8-bit data I/O for program memory write, read, or verification	CMOS push-pull
77	CLK	Clock input for address updating during program memory write, read, or verification	—

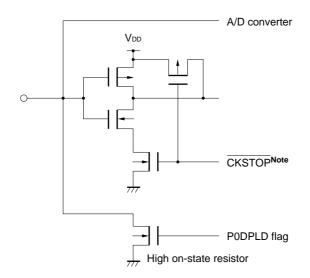
Remark The pins other than those listed above are not used in PROM programming mode. For the handling of the unused pins, see **PIN CONFIGURATION**, (2) **PROM programming mode**.

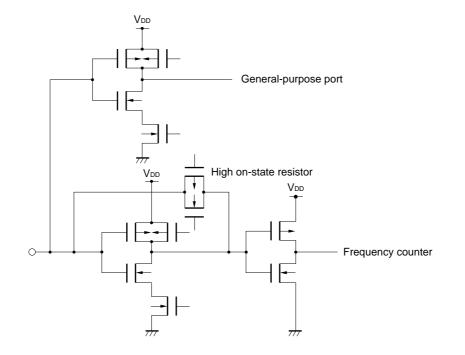
★ 1.3 EQUIVALENT CIRCUIT OF PINS

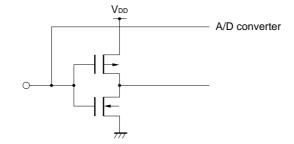

(1) P0A (P0A1/SCK0, P0A0/SO0)
P0B (P0B3/SI0, P0B2/SCK1, P0B1/SO1, P0B0/SI1)
P0C (P0C3, P0C2, P0C1, P0C0)
P1D (P1D3, P1D2, P1D1/BEEP1, P1D0/BEEP0)
P2A (P2A2, P2A1/FCG1, P2A0/FCG0)
P2B (P2B3, P2B2, P2B1, P2B0)
P2C (P2C3, P2C2, P2C1, P2C0)
P2D (P2D2, P2D1, P2D0)
P3A (P3A3, P3A2, P3A1, P3A0)
P3B (P3B3, P3B2, P3B1, P3B0)
P3C (P3C3, P3D2, P3D1, P3D0)

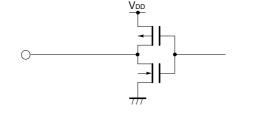

(I/O)

Note In this circuit, a current drained by noise does not increase even if the circuit is in the floating state, because of the internal signal being output when the clock stop instruction is executed.


(2) P0A (P0A3/SDA, P0A2/SCL) (I/O)

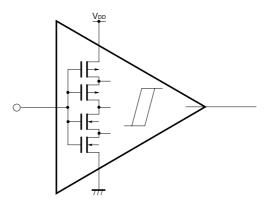

- **Note** In this circuit, a current drained by noise does not increase even if the circuit is in the floating state, because of the internal signal being output when the clock stop instruction is executed.
- (3) P1B (P1B3, P1B2/PWM2, P1B1/PWM1, P1B0/PWM0) (Output)


(4) P0D (P0D3/AD3, P0D2/AD2, P0D1/AD1, P0D0/AD0) (Input)

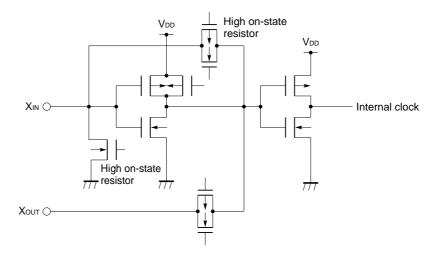

Note In this circuit, a current drained by noise does not increase even if the circuit is in the floating state, because of the internal signal being output when the clock stop instruction is executed.

(7) P1C (P1C1/AMIFC, P1C0/FMIFC) (Input)

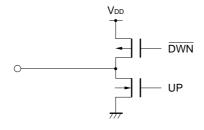
(6) P1C (P1C3/AD5, P1C2/AD4) (Input)



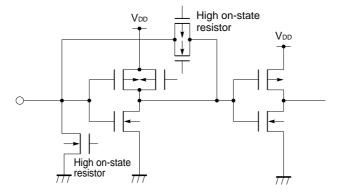
(5) P1A (P1A1) (Input)



(8) CE RESET INT0, INT1, INT2 P1A (P1A3/INT4, P1A2/INT3, P1A0/TM0G)


(Schmitt-triggered input)

(9) XOUT (Output), XIN (Input)



(10) EO1, EO0 (Output)

(11) VCOH, VCOL (Input)

*

1.4 HANDLING UNUSED PINS

The unused pins should be handled as indicated in Table 1-1.

(1/2)

	Pin	I/O format	Recommended handling
	P0D3/AD3-P0D0/AD0	Input	Connect each pin to GND through a resistor.Note 1
	P1C3/AD5 P1C2/AD4 P1C1/AMIFCNote 2 P1C0/FMIFCNote 2		Specify as a port and connect each pin to V _{DD} or GND through a resistor.Note 1
	P1A3/INT4 P1A2/INT3 P1A1 P1A0/TM0G		Connect each pin to GND through a resistor.Note 1
	P1B3 P1B2/PWM2-P1B0/PWM0	N-ch open-drain output	Specify low output, in the software, and leave open.
Port pins	P0A3/SDA P0A2/SCL P0A1/SCK0 P0A0/SO0 P0B3/SI0 P0B2/SCK1 P0B1/SO1 P0B0/SI1 P0C3-P0C0	/⊖Note 3	Specify as a general-purpose input port, in the software, and connect each pin to V_{DD} or GND through a resistor.Note 1
	P1D3 P1D2 P1D1/BEEP1 P1D0/BEEP0 P2A2 P2A1/FCG1 P2A0/FCG0		
	P2B3-P2B0		
	P2C3-P2C0		
	P2D2-P2D0		

- **Notes 1.** When making an external connection to VDD with a pull-up resistor, or to GND with a pull-down resistor, note the following: If the resistance of the pull-up or pull-down resistor is too high, the pin approaches the high impedance state, thus increasing the through current drawn by the port. In general, pull-up and pull-down resistors should have a resistance of between 20 and 50 kilohms, depending on the application circuit.
 - 2. Do not specify AMIFC or FMIFC. If AMIFC or FMIFC is specified, current drain increases.
 - 3. I/O ports become general-purpose input ports upon power-on reset, reset by the RESET pin, watchdog timer reset, or stack overflow/underflow reset.

*

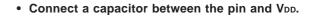
(2/2)

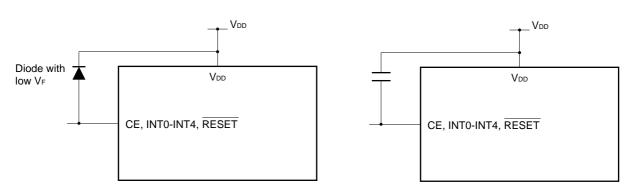
	Pin	I/O format	Recommended handling
	P3A3-P3A0	I/ONote 2	Specify as a general-purpose input port, in the software, and
pins	P3B3-P3B0		connect each pin to VDD or GND through a resistor.Note 1
Port	P3C3-P3C0		
	P3D3-P3D0		
	CE	Input	Connect to VDD through a resistor.Note 1
pins	EO1 EO0	Output	Leave each pin open.
port	INT0-INT2	Input	Connect each pin to GND through a resistor.Note 1
than	RESET	Input	Connect to VDD through a resistor.Note 1
Other	TEST	_	Connect directly to GND.Note 1
0	VCOH VCOL	Input	Disable PLL, in the program, and leave each pin open.

- **Notes 1.** When making an external connection to VDD with a pull-up resistor, or to GND with a pull-down resistor, note the following: If the resistance of the pull-up or pull-down resistor is too high, the pin approaches the high impedance state, thus increasing the through current drawn by the port. In general, pull-up and pull-down resistors should have a resistance of between 20 and 50 kilohms, depending on the application circuit.
 - 2. I/O ports become general-purpose input ports upon power-on reset, reset by the RESET pin, watchdog timer reset, or stack overflow/underflow reset.

 \star

★ 1.5 NOTES ON USE OF THE CE, INT0-INT4, AND RESET PINS (ONLY IN NORMAL OPERATION MODE)

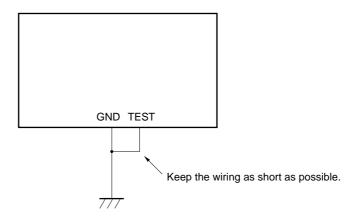

The CE, INT0-INT4, and $\overrightarrow{\text{RESET}}$ pins can be used as the test mode selection pin for testing the internal operation of the μ PD17P709 (IC test), besides the usage shown in **Section 1.1**.


Applying a voltage exceeding V_{DD} to the CE, INT0-INT4, or $\overrightarrow{\text{RESET}}$ pin causes the μ PD17P709 to enter test mode. When noise exceeding V_{DD} comes in during normal operation, the device may not operate normally.

For example, if the wiring from the CE, INT0-INT4, or RESET pin is too long, noise may be induced on the wiring, causing this mode switching.

When installing the wiring, lay the wiring in such a way that noise is suppressed as much as possible. If noise yet arises, use an external part to suppress it as shown below.

• Connect a diode with low VF between the pin and VDD.



★ 1.6 NOTES ON USE OF THE TEST PIN (ONLY IN NORMAL OPERATION MODE)

Applying V_{DD} to the TEST pin causes the μ PD17P709 to enter test mode or program memory write/verify mode. Keep the wiring as short as possible and connect the TEST pin directly to the GND pin.

When the wiring between the TEST pin and GND pin is too long or external noise enters the TEST pin, a voltage difference may occur between the TEST pin and GND pin. When this happens, your program may malfunction.

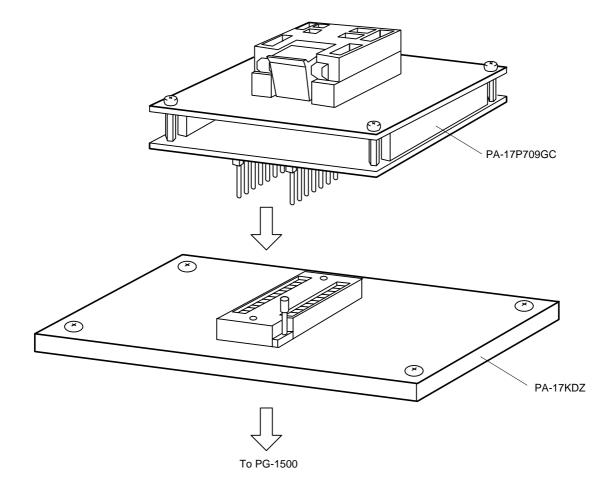
2. ONE-TIME PROM (PROGRAM MEMORY) WRITE, READ, AND VERIFICATION

The program memory built into the μ PD17P709 is a one-time PROM (16384 × 16 bits) that is electrically writable. In normal operation, this PROM is accessed on a 16-bit word basis. During program memory write, read, and verification, the PROM is accessed on an 8-bit word basis. The higher 8 bits of a 16-bit word are located at an evennumbered address, and the lower 8 bits are located at an odd-numbered address.

For PROM write, read, and verification, PROM programming mode must be specified, and the pins listed in Table 2-1 are used.

In this case, address input is not used. Instead, clock input on the CLK pin is used to update addresses.

Pin	Function	
Vpp	Used to apply the program voltage (+12.5 V)	
CLK Used to apply an address update clock		
MD0-MD3	Used to select an operating mode	
D0-D7	Used to input/output 8-bit data	
Vdd0, Vdd1	Used to apply the power supply voltage (+6 V)	


 Table 2-1
 Pins Used for Program Memory Write, Read, and Verification

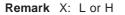
For writing to the built-in PROM, a specified PROM programmer and dedicated programmer adapter are to be used. The following PROM programmers and programmer adapters are usable:

PROM programmer	Programmer adapter
PG-1500	PA-17P709GC
+	
PA-17KDZ	
(adapter for PG-1500)	

Third-party PROM programmers are also available: For example, AF-9703, AF-9704, AF-9705, and AF-9706 (manufactured by Ando Electric Co., Ltd.)

Fig. 2-1 PA17P709GC and PA-17KDZ

2.1 OPERATING MODES FOR PROGRAM MEMORY WRITE, READ, AND VERIFICATION

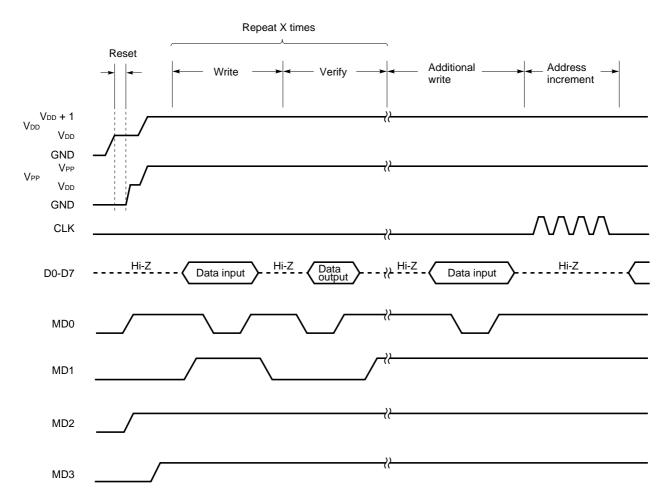

The μ PD17P709 is placed in program memory write, read, and verify mode when +6 V is applied to the V_{DD} pin, and +12.5 V to the V_{PP} pin.

In this mode, one of the operating modes indicated in Table 2-2 is set, depending on the setting of the MD0 to MD3 pins.

The input pins that are not used for program memory write, read, and verification are connected to GND through a pull-down resistor (470 ohms). (See **PIN CONFIGURATION**, (2) **PROM programming mode**.)

O	Operating mode specification					Operating mode				
Vpp	Vdd	MD0	MD1	MD2	MD3					
+12.5V	+6V	н	L	н	L	Program memory address zero-clear mode				
		L	н	н	н	Write mode				
		L	L	н	н	Read/verify mode				
		н	х	н	н	Program inhibit mode				

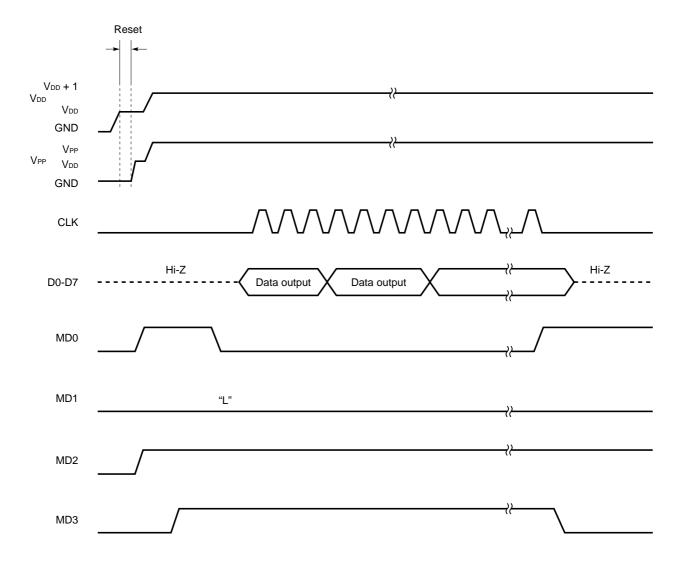
Table 2-2 Operating Modes for Program Memory Write, Read, and Verication



2.2 PROGRAM MEMORY WRITE PROCEDURE

The program memory write procedure is described below. The procedure allows high-speed write operation.

- (1) Connect the unused pins to GND through pull-down resistors. The CLK pin must be low.
- (2) Apply 5 V to the V_DD pin. The VPP pin must be low.
- (3) Apply 5 V to the VPP pin after waiting 10 μ s.
- (4) Specify program memory address zero-clear mode, using the mode setting pins.
- (5) Apply 6 V to VDD, and 12.5 V to VPP.
- (6) Program inhibit mode
- (7) Write data in 1-ms write mode.
- (8) Program inhibit mode
- (9) Verify mode. When data has been written normally, proceed to step (10). When data has not been written normally, repeat steps (7) to (9).
- (10) Perform an additional write operation ((X: Number of write operations performed in steps (7) to (9)) \times 1 ms).
- (11) Program inhibit mode
- (12) Apply four pulses to the CLK pin to increment the program memory address by 1.
- (13) Repeat steps (7) to (12) until the last address is reached.
- (14) Program memory address zero-clear mode
- (15) Change the voltage applied to the V_DD and V_PP pins to 5 V.
- (16) Turn off the power.


Steps (2) to (12) are illustrated below.

2.3 PROGRAM MEMORY READ PROCEDURE

- (1) Connect the unused pins to GND through pull-down resistors. The CLK pin must be low.
- (2) Apply 5 V to the V_DD pin. The V_PP pin must be low.
- (3) Apply 5 V to the VPP pin after waiting 10 μ s.
- (4) Specify program memory address zero-clear mode, using the mode setting pins.
- (5) Apply 6 V to VDD, and 12.5 V to VPP.
- (6) Program inhibit mode
- (7) Verify mode. When a clock pulse signal is applied to the CLK pin, data is output for each address every four clock pulses.
- (8) Program inhibit mode
- (9) Program memory address zero-clear mode
- (10) Change the voltage applied to the V_DD and V_PP pins to 5 V.
- (11) Turn off the power.

Steps (2) to (9) are illustrated below.

***** 3. ELECTRICAL CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS (T_A = 25 °C)

Parameter	Symbol	Condition	Rating	Unit
Supply voltage	Vdd		-0.3 to +6.0	V
PROM program voltage	Vpp		-0.3 to +13.5	V
Input voltage	Vi	At other than CE, INT0-INT4, and RESET pins	-0.3 to V _{DD} + 0.3	V
		CE, INT0-INT4, and RESET pins	-0.3 to V _{DD} + 0.6	V
Output voltage	Vo	At other than P1B0-P1B3	-0.3 to V _{DD} + 0.3	V
High output current	Іон	At one pin	-8.0	mA
		Total for P2A0-P2A2, P3A0-P3A3, and P3B0-P3B3	-15.0	mA
		Total for P0A0-P0A3, P0B0-P0B3, P0C0-P0C3, P1D0-P1D3, P2B0-P2B3, P2C0-P2C3, P2D0-P2D2, P3C0-P3C3, and P3D0-P3D3	-25.0	mA
Low output current	Iol	At one pin of P1B0-P1B3	12.0	mA
		At one pin of other than P1B0-P1B3	8.0	mA
		Total for P2A0-P2A2, P3A0-P3A3, and P3B0-P3B3	15.0	mA
		Total for P0A0-P0A3, P0B0-P0B3, P0C0-P0C3, P1D0-P1D3, P2B0-P2B3, P2C0-P2C3, P2D0-P2D2, P3C0-P3C3, and P3D0-P3D3	25.0	mA
		Total for P1B0-P1B3	25.0	mA
Output withstand voltage	VBDS	P1B0-P1B3	14.0	V
Total loss	Pt		200	mW
Operating ambient temperature	TA		-40 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Caution Absolute maximum ratings are rated values beyond which physical damage will be caused to the product; if the rated value of any of the parameters in the above table is exceeded, even momentarily, the quality of the product may deteriorate. Always use the product within its rated values.

RECOMMENDED OPERATING RANGES (T_A = -40 to +85 °C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Supply voltage	Vdd1	While the CPU and PLL are operating		5.0	5.5	V
	Vdd2	While the CPU is operating but the PLL is halted	3.5	5.0	5.5	V

RECOMMENDED OUTPUT WITHSTAND VOLTAGE (T_A = -40 to +85 °C)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Output withstand voltage	VBDS	P1B0-P1B3			12	V

DC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 3.5 to 5.5 V)

Parameter	Symbol	(Min.	Тур.	Max.	Unit	
Supply current	Idd1	The CPU is operating but sinusoidal wave applied ($f_{IN} = 4.5 \text{ MHz } \pm 1\%$, $V_{IN} = 4.5 \text{ MHz } \pm 1\%$			1.5	3.0	mA
	IDD2	The CPU and PLL are has applied to the X _{IN} pin. ($f_{IN} = 4.5$ MHz ±1%, V _{IN} = The HALT instruction is the trace of t			0.7	1.5	mA
Data hold voltage	VDDR1	The crystal oscillator is o	perating.	3.5		5.5	V
	Vddr2	The crystal oscillator is halted.	The timer flip-flop is used for detecting power failure.	2.2		5.5	V
	Vddr3		Data memory contents are held.	2.0		5.5	V
Data hold current	IDDR1	The crystal oscillator is	$V_{DD} = 5 \text{ V}, \text{ T}_{A} = 25 ^{\circ}\text{C}$		2.0	4.0	μΑ
	IDDR2	halted.			2.0	30.0	μΑ
High input voltage	Vihi	P1D0-P1D3, P2A2, P2B0	P0A0, P0B1, P0C0-P0C3, P1A0, P1A1, P1C0-P1C3, P1D0-P1D3, P2A2, P2B0-P2B3, P2C0-P2C3, P2D0-P2D2, P3A0-P3A3, P3B0-P3B3, P3C0-P3C3, P3D0-P3D3			Vdd	V
	VIH2	P0A1-P0A3, P0B0, P0B2 INT0-INT4, RESET	2, P0B3, P2A0, P2A1, CE,	0.8Vdd		Vdd	V
	Vінз	P0D0-P0D3		0.55Vdd		Vdd	V
Low input voltage	VIL1	P1D0-P1D3, P2A2, P2B0	3, P1A0, P1A1,P1C0-P1C3,)-P2B3, P2C0-P2C3, P2D0-P2D2, , P3C0-P3C3, P3D0-P3D3	0		0.3Vdd	V
	VIL2	P0A1-P0A3, P0B0, P0B2 INT0-INT4, RESET	0		0.2Vdd	V	
	VIL3	P0D0-P0D3		0		0.15Vdd	V
High output current	Іон1	P2A0-P2A2, P2B0-P2B3	, Р0С0-Р0С3, Р1D0-Р1D3, , Р2С0-Р2С3, Р2D0-Р2D2, , Р3С0-Р3С3, Р3D0-Р3D3 Vон = Vdd – 1 V	-1.0			mA
	Іон2	EO0, EO1 Vdd	о = 4.5 to 5.5 V, Vон = Vоо – 1 V	-3.0			mA
Low output current	Iol1	P2A0-P2A2, P2B0-P2B3	, P0C0-P0C3, P1D0-P1D3, , P2C0-P2C3, P2D0-P2D2, , P3C0-P3C3, P3D0-P3D3 Vol = 1 V	1.0			mA
	IOL2	EO0, EO1	V_{DD} = 4.5 to 5.5 V, V_{OL} = 1 V	3.0			mA
	Іоіз	P1B0-P1B3	Vol = 1 V	7.0			mA
High input current	Ін	P0D0-P0D3 are pulled de	own. Vin = Vdd	5.0		150	μA
Output-off leakage	ILO1	P1B0-P1B3	V _{IN} = 12 V			1.0	μA
current	ILO2	EO0, EO1	$V_{IN} = V_{DD}, V_{IN} = 0 V$			±1.0	μΑ
High input leakage current	Ішн	Input pin	Vin = Vdd			1.0	μΑ
Low input leakage current	Ілі	Input pin	$V_{IN} = 0 V$			-1.0	μA

AC CHARACTERISTICS (T_A = -40 to +85 °C, V_{DD} = 5 V ±10%)

Parameter	Symbol		Condition	Min.	Тур.	Max.	Unit
Operating frequency	fin1	VCOL pin in MF mode	Sinusoidal wave applied to the V_{IN} pin = 0.15 V _{P-P}	0.8		3	MHz
			Sinusoidal wave applied to the V_{IN} pin = 0.20 V _{P-P}	0.5		3	MHz
	fin2	VCOL pin in HF mode, with a sinusoidal wave applied to the VIN pin = 0.1 VP.PNote VCOH pin in VHF mode, with a sinusoidal wave applied to the VIN pin = 0.1 VP.PNote AMIFC pin, with a sinusoidal wave applied to the VIN pin = 0.15 VP.P		10		40	MHz
	fіnз			60		130	MHz
	fin4			0.4		0.5	MHz
	fins	FMIFC pin in FMIF cour applied to the VIN pin =	nt mode, with a sinusoidal wave 0.20 V _{P-P}	10		11	MHz
	fin6	FMIFC pin in AMIF count mode, with a sinusoidal wave applied to the V _{IN} pin = 0.15 V _{P-P}		0.4		0.5	MHz
SIO0 input frequency	fin7	External clock				1	MHz
SIO1 input frequency	fin8	External clock				0.7	MHz

Note The condition of sinusoidal wave input $V_{IN} = 0.1 V_{P-P}$ is the rated value when the μ PD17P709 alone is operating. Where influence of noise must be taken into consideration, operation under input amplitude condition of $V_{IN} = 0.15 V_{P-P}$ is recommended.

A/D CONVERTER CHARACTERISTICS (TA = -40 to +85 °C, VDD = 5 V \pm 10%)

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Total error in A/D conversion		8 bits			±3.0	LSB
Total error in A/D conversion		8 bits $T_A = 0$ to 85 °C			±2.5	LSB

REFERENCE CHARACTERISTICS (T_A = +25 °C, V_{DD} = 5.0 V)

Parameter	Symbol	Condition		Тур.	Max.	Unit
Supply current	Idd3	The CPU and PLL are operating, with a sinusoidal wave applied to the VCOH pin. $(f_{IN} = 130 \text{ MHz}, V_{IN} = 0.3 \text{ V}_{P-P})$		6.0	12.0	mA

DC PROGRAMMING CHARACTERISTICS (TA = 25 °C, VDD = 6.0 ± 0.25 V, VPP = 12.5 ± 0.5 V)

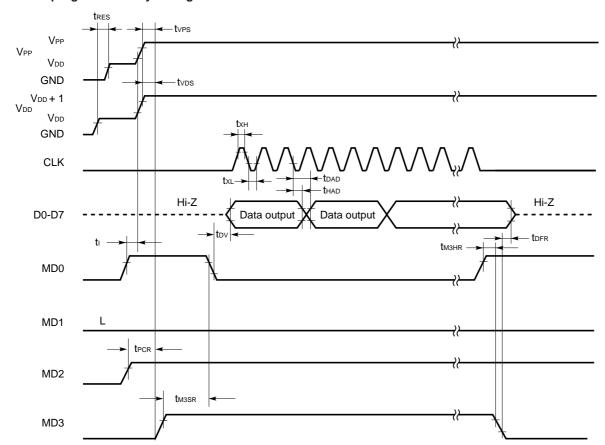
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Input high voltage	V _{IH1}	Other than CLK	0.7Vdd		Vdd	V
	VIH2	CLK	Vdd - 0.5		Vdd	V
Input low voltage	VIL1	Other than CLK	0		0.2Vdd	V
	VIL2	CLK	0		0.4	V
Input leakage current	lu	VIN = VIL OF VIH			10	μA
Output high voltage	Vон	Іон = -1 mA	Vdd -1.0			V
Output low voltage	Vol	lo∟ = 1 mA			1.0	V
VDD supply current	IDD				30	mA
VPP supply current	Ірр	MD0 = VIL, MD1 = VIH			30	mA

Cautions 1. VPP must be under +13.5 V including overshoot.

2. VDD must be applied before VPP on and must be off after VPP off.

Parameter	Symbol	Note 1	Condition	Min.	Тур.	Max.	Unit
Address setup time ^{Note 2} (referred to MD0 \downarrow)	tas	tas		2			μs
MD1 setup time (referred to MD0 \downarrow)	t мıs	toes		2			μs
Data setup time (referred to MD0 \downarrow)	tos	tos		2			μs
Address hold time ^{Note 2} (referred to MD0↑)	tан	tан		2			μs
Data hold time (referred to MD0 $^{\uparrow}$)	tон	tон		2			μs
Data output float delay from MD0 \uparrow	t DF	t DF		0		130	ns
V _{PP} setup time (referred to MD3↑)	tvps	tvps		2			μs
V _{DD} setup time (referred to MD3↑)	tvos	tvcs		2			μs
Initial program pulse width	tpw	tew		0.95	1.0	1.05	ms
Additional program pulse width	topw	topw		0.95		21.0	ms
MD0 setup time (referred to MD1 ¹)	tмos	tces		2			μs
Data output delay from MD0 \downarrow	tov	tov	MD0 = MD1 = VIL			1	μs
MD1 hold time (referred to MD0↑)	tм1н	tоен	tм1н + tм1к • 50 μs	2			μs
MD1 recovery time (referred to MD0 \downarrow)	t _{M1R}	tor		2			μs
Program counter reset time	t PCR	-		10			μs
CLK input high, low level range	txн,tx∟	-		0.125			μs
CLK input frequency	fx	-				4.19	MHz
Initial mode set time	tı	-		2			μs
MD3 setup time (referred to MD1 ¹)	tмзs	-		2			μs
MD3 hold time (referred to MD1 \downarrow)	tмзн	-		2			μs
MD3 setup time (referred to MD0 \downarrow)	tмзsr	-	When reading	2			μs
Data output delay from address incrementNote 2	t dad	DAD tACC program memo				2	μs
Data output hold time from address incrementNote 2	t had	tон		0		130	ns
MD3 hold time (referred to MD0 [↑])	tмзнк	-		2			μs
Data output float delay from MD3 \downarrow	t dfr	-				2	μs
Reset setup time	tres	_		10			μs

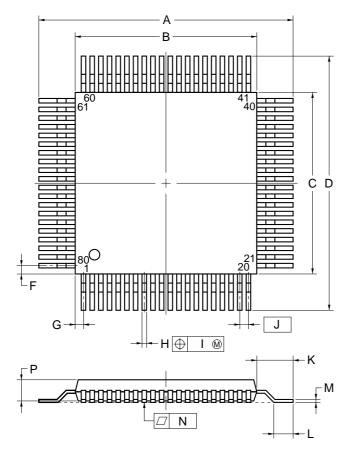
AC PROGRAMMING CHARACTERISTICS (TA = 25 °C, VDD = 6.0 ±0.25 V, VPP = 12.5 ±0.5 V)

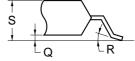

Notes 1. Symbols used for the μ PD27C256 (The μ PD27C256 is used only for maintenance.)

2. The internal address signal is incremented by 1 on the falling edge of the third clock (CLK) pulse, with four CLK pulses treated as one cycle. Internal addresses are not connected to pins.

NEC

Write program memory timing tres ← tvps V_{PP} V_{PP} Vdd GND tvds ~? 77 Vdd GND CLK txL Data output Data input Data input Data input D0-D7 \mathcal{X} ← tdн — tан tos t_{DH} tov **t**DF tAS tos MD0 t₽w topw t_{M1R} tMOS MD1 → t_{PCR} tm₁s **t**м1н MD2 tмзн tмзs ᢣ MD3


Remark The dashed line indicates high-impedance.


Read program memory timing

4. PACKAGE DRAWING

80 PIN PLASTIC QFP (14×14)

detail of lead end

NOTE

Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES		
A	17.2±0.4	0.677±0.016		
В	14.0±0.2	0.551+0.009 -0.008		
С	14.0±0.2	$0.551\substack{+0.009\\-0.008}$		
D	17.2±0.4	0.677±0.016		
F	0.825	0.032		
G	0.825	0.032		
н	0.30±0.10	$0.012^{+0.004}_{-0.005}$		
I	0.13	0.005		
J	0.65 (T.P.)	0.026 (T.P.)		
к	1.6±0.2	0.063 ± 0.008		
L	0.8±0.2	$0.031\substack{+0.009\\-0.008}$		
М	$0.15^{+0.10}_{-0.05}$	$0.006^{+0.004}_{-0.003}$		
Ν	0.10	0.004		
Р	2.7	0.106		
Q	0.1±0.1	0.004 ± 0.004		
R	5°±5°	5°±5°		
S	3.0 MAX.	0.119 MAX.		
		S80GC-65-3B9-4		

5. RECOMMENDED SOLDERING CONDITIONS

The conditions listed below shall be met when soldering the μ PD17P709.

For details of the recommended soldering conditions, refer to our document *SMD Surface Mount Technology Manual* (C10535E).

Please consult with our sales offices in case any other soldering process is used, or in case soldering is done under different conditions.

Table 5-1 Soldering Conditions for Surface-Mount Devices

μ PD17P709GC-3B9: 80-pin plastic QFP (14 × 14 mm, 0.65-mm pitch)

Soldering process	Soldering conditions	Recommended conditions	
Infrared ray reflow	Peak package's surface temperature: 235 °C Reflow time: 30 seconds or less (at 210 °C or more) Maximum allowable number of reflow processes: 2	IR35-00-2	
VPS	Peak package's surface temperature: 215 °C Reflow time: 40 seconds or less (at 200 °C or more) Maximum allowable number of reflow processes: 2	VP15-00-2	
Wave soldering	Solder temperature: 260 °C or less Flow time: 10 seconds or less Number of flow processes: 1 Preheating temperature: 120°C max. (measured on the package surface)	WS60-00-1	
Partial heating method	Terminal temperature: 300 °C or less Heat time: 3 seconds or less (for one side of a device)	_	

Caution Do not apply more than a single process at once, except for "Partial heating method."

APPENDIX DEVELOPMENT TOOLS

The following support tools are available for developing programs for the μ PD17P709.

Hardware

Name	Description
In-circuit emulator [IE-17K IE-17K-ETNote 1 EMU-17KNote 2	 The IE-17K, IE-17K-ET, and EMU-17K are in-circuit emulators applicable to the 17K series. The IE-17K and IE-17K-ET are connected to the host machine (PC-9800 series or IBM PC/ATTM) through the RS-232C interface. The EMU-17K is inserted into the extension slot of the host machine (PC-9800 series). Use the system evaluation board (SE board) corresponding to each product together with one of these in-circuit emulators. <i>SIMPLEHOST</i>[®], a man machine interface, implements an advanced debug environment. The EMU-17K also enables user to check the contents of the data memory in real time.
SE board (SE-17709)	The SE-17709 is an SE board for the μ PD17709 sub-series. It is used alone for evaluating the system. It is also used for debugging, in combination with an in-circuit emulator.
Emulation probe (EP-17K80GC)	The EP-17K80GC is an emulation probe for the μ PD17P709GC. When used with the EV- 9200GC-80 ^{Note 3} , this emulation probe connects the SE board to the target system.
Conversion socket (EV-9200GC-80 ^{Note 3})	The EV-9200GC-80 is a conversion socket for the 80-pin plastic QFP (14 \times 14 mm). It is used to connect the EP-17K80GC to the target system.
PROM Programmer (PG-1500)	The PG-1500 is a PROM programmer for the μ PD17P709. Use this PROM programmer with the PA-17KDZ (adapter for the PG-1500) and PA- 17P709GC programmer adapter, to program the μ PD17P709.
Programmer adapter (PA-17P709GC)	The PA-17P709GC is a socket unit for the μ PD17P709. It is used with the PG-1500.

Notes 1. Low-end model, operating on an external power supply

- The EMU-17K is a product of I.C Corporation. Contact I.C Corporation (Tokyo, 03-3733-1163) for details.
- 3. The EP-17K80GC is supplied together with one EV-9200GC-80. A set of five EV-9200GC-80s is also available.
- **Remark** Third-party PROM programmers are also available: For example, AF-9703, AF-9704, AF-9705, and AF-9706 (manufactured by Ando Electric Co., Ltd.). These PROM programmers can be used with the PA-17P709GC programmer adapter. For details, contact Ando Electric Co., Ltd. (Tokyo, 03-3733-1151).

Software

Name	Description	Host machine	OS		Distribution media	Part number
17K seriesAS17K is an assemblerassemblerapplicable to the 17K series.		PC-9800 series	00 MS-DOSTM		5.25-inch, 2HD	μS5A10AS17K
(AS17K)	programs, AS17K is used in				3.5-inch, 2HD	μS5A13AS17K
combination with a device file (AS17704).	IBM PC/AT	PC DOS™		5.25-inch, 2HC	μ S7B10AS17K	
					3.5-inch, 2HC	μ S7B13AS17K
Device fileAS17704 has a device file for(AS17704)the μ PD17P709 .		PC-9800 MS-DOS series		5.25-inch, 2HD	μS5A10AS17704	
It is used together with the assembler (AS17K), which is applicable to the 17K series.				3.5-inch, 2HD	μS5A13AS17704	
	applicable to the TTK series.	IBM PC/AT	PC DOS		5.25-inch, 2HC	μS7B10AS17704
					3.5-inch, 2HC	μS7B13AS17704
(SIMPLEHOST) r i	<i>SIMPLEHOST</i> , running under Windows TM , provides a man machine interface in develop- ing programs by using a personal computer and in- circuit emulator.	PC-9800 series	MS-DOS	Windows	5.25-inch, 2HD	μS5A10ΙΕ17Κ
					3.5-inch, 2HD	μS5A13ΙΕ17Κ
		IBM PC/AT	PC DOS		5.25-inch, 2HC	μS7B10IE17K
					3.5-inch, 2HC	μS7B13IE17K

Remark The following table lists the versions of the operating systems described in the above table.

OS	Versions		
MS-DOS	Ver. 3.30 to Ver.5.00A ^{Note}		
PC DOS	Ver. 3.1 to Ver. 5.0 ^{Note}		
Windows	Ver. 3.0 to Ver. 3.1		

Note MS-DOS versions 5.00 and 5.00A and PC DOS Ver. 5.0 are provided with a task swap function. This function, however, cannot be used in these software packages.

NOTES FOR CMOS DEVICES –

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Caution This product contains an I²C bus interface circuit. When using the I²C bus interface, notify its use to NEC when ordering custom code. NEC can guarantee the following only when the customer informs NEC of the use of the interface: Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.) Santa Clara, California Tel: 800-366-9782 Fax: 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office

Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303

Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd. United Square, Singapore 1130 Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Sao Paulo-SP, Brasil Tel: 011-889-1680 Fax: 011-889-1689

J96. 8

SIMPLEHOST is a trademark of NEC Corporation. MS-DOS and Windows are trademarks of Microsoft Corporation. PC/AT and PC DOS are trademarks of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or reexport of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.

M4 96.5