PRELIMINARY DATA SHEET

MOS INTEGRATED CIRCUIT $\mu PD30550$

V_R5500[™]

64-/32-BIT MICROPROCESSOR

DESCRIPTION

The μ PD30550 (V_R5500) is a member of the V_R SeriesTM of RISC (Reduced Instruction Set Computer) microprocessors. It is a high-performance 64-/32-bit microprocessor that employs the RISC architecture developed by MIPSTM.

The V_R5500 allows selection of a 64-bit or 32-bit bus width for the system interface, and can operate using protocols compatible with the V_R5000 SeriesTM and V_R5432^{TM} .

Detailed function descriptions are provided in the following user's manual. Be sure to read the manual before designing.

VR5500 User's Manual (U16044E)

FEATURES

- MIPS 64-bit RISC architecture
- · High-speed operation processing
 - Two-way superscalar super pipeline
 - 300 MHz product: 603 MIPS
 400 MHz product: 804 MIPS
- High-speed translation lookaside buffer (TLB) (48 entries)
- · Address space
 - Physical: 36 bits (64-bit bus selected)
 - 32 bits (32-bit bus selected)
 - Virtual: 40 bits (in 64-bit mode)
 - 31 bits (in 32-bit mode)
- On-chip floating-point unit (FPU)
 - Supports sum-of-products instructions
- On-chip primary cache memory (instruction/data: 32 KB each)
 - 2-way set associative
 - · Supports line lock feature

- 64-/32-bit address/data multiplexed bus
 - Bus width selectable during reset
 - Bus protocol compatibility with existing products retained
- Maximum operating frequency
 - 300 MHz product: Internal 300 MHz, external 133 MHz
 - 400 MHz product: Internal 400 MHz, external 133 MHz
 - External/internal multiplication factor selectable from ×2 to ×5.5 by increments of 0.5
- Conforms to MIPS I, II, III, and IV instruction sets. Also supports product-sum operation instruction, rotate instruction, register scan instruction, and instruction for low power mode.
- Supports hardware debug function (N-Wire)
- Supply voltage

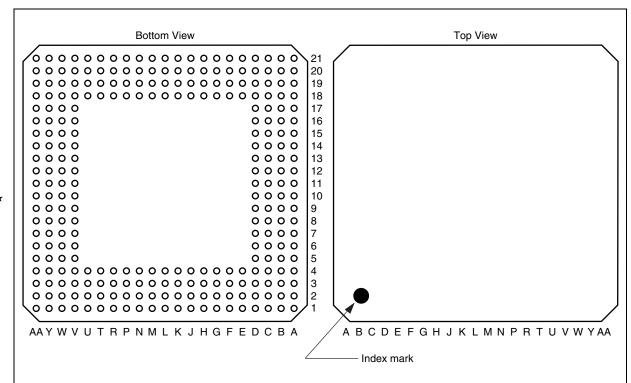
Core block: 1.5 V ±5% (300 MHz product)

1.6 to 1.7 V (400 MHz product)

I/O block: 3.3 V \pm 5%, 2.5 V \pm 5%

The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production. Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.

APPLICATIONS


- Set-top boxes
- RAID
- High-end embedded devices, etc.

ORDERING INFORMATION

Part Number	Package	Maximum Operating Frequency (MHz)
μ PD30550F2-300-NN1	272-pin plastic BGA (C/D advanced type) (29 \times 29)	300
μ PD30550F2-400-NN1	272-pin plastic BGA (C/D advanced type) (29 \times 29)	400

PIN CONFIGURATION

• 272-pin plastic BGA (C/D advanced type) (29 \times 29) μ PD30550F2-300-NN1 μ PD30550F2-400-NN1

*

(1/2)

No.	Pin Name	No.	Pin Name	No.	Pin Name	No.	Pin Name
A1	Vss	B17	SysAD27	D12	Vss	H4	V _{DD}
A2	Vss	B18	V _{DD} IO	D13	SysAD31	H18	Vss
А3	VDDIO	B19	VDDIO	D14	V _{DD}	H19	Vss
A4	VDDIO	B20	Vss	D15	SysAD60	H20	Vss
A5	Reset#	B21	Vss	D16	Vss	H21	SysAD21
A6	PReq#	C1	V _{DD} IO	D17	SysAD26	J1	SysCmd7
A7	ValidIn#	C2	V _{DD} IO	D18	Vss	J2	SysCmd8
A8	ValidOut#	С3	Vss	D19	Vss	J3	TIntSel
A9	Vss	C4	Vss	D20	V _{DD} IO	J4	Int0#
A10	SysADC7	C5	Vss	D21	V _{DD} IO	J18	SysAD52
A11	SysADC3	C6	V _{DD}	E1	SysCmd0	J19	SysAD20
A12	SysADC1	C7	WrRdy#	E2	DisDValidO#	J20	SysAD51
A13	SysADC4	C8	Vss	E3	DWBTrans#	J21	SysAD19
A14	SysAD62	C9	SysID1	E4	O3Return#	K1	Int1#
A15	SysAD30	C10	V _{DD}	E18	SysAD57	K2	Vss
A16	SysAD28	C11	SysADC2	E19	SysAD25	КЗ	Vss
A17	SysAD59	C12	Vss	E20	SysAD56	K4	Vss
A18	V _{DD} IO	C13	SysAD63	E21	SysAD24	K18	V _{DD}
A19	V _{DD} IO	C14	V _{DD}	F1	SysCmd1	K19	V _{DD}
A20	Vss	C15	SysAD29	F2	Vss	K20	V _{DD}
A21	Vss	C16	Vss	F3	Vss	K21	V _{DD}
B1	Vss	C17	SysAD58	F4	Vss	L1	Int2#
B2	Vss	C18	V _{DD} IO	F18	V _{DD}	L2	Int3#
В3	VddIO	C19	Vss	F19	V _{DD}	L3	Int4#
B4	VddIO	C20	V _{DD} IO	F20	V _{DD}	L4	Int5#
B5	ColdReset#	C21	V _{DD} IO	F21	SysAD55	L18	SysAD17
В6	Release#	D1	VDDIO	G1	SysCmd2	L19	SysAD49
B7	ExtRqst#	D2	VDDIO	G2	SysCmd3	L20	SysAD18
B8	BusMode	D3	Vss	G3	SysCmd4	L21	SysAD50
В9	SysID2	D4	Vss	G4	SysCmd5	M1	RMode#/BKTGIO#
B10	V _{DD}	D5	IC	G18	SysAD23	M2	V _{DD}
B11	SysADC6	D6	V _{DD}	G19	SysAD54	МЗ	V _{DD}
B12	Vss	D7	RdRdy#	G20	SysAD22	M4	V _{DD}
B13	SysADC0	D8	Vss	G21	SysAD53	M18	Vss
B14	V _{DD}	D9	SysID0	H1	SysCmd6	M19	Vss
B15	SysAD61	D10	V _{DD}	H2	V _{DD}	M20	Vss
B16	Vss	D11	SysADC5	НЗ	V _{DD}	M21	Vss

Caution Leave the IC pin open.

Remark # indicates active low.

(2/2)

No.	Pin Name	No.	Pin Name	No.	Pin Name	No.	Pin Name
N1	V _{DD} IO	T21	SysAD12	W2	VDDIO	Y12	V _{DD}
N2	NMI#	U1	NTrcClk	W3	Vss	Y13	SysAD3
N3	V _{DD} IO	U2	NTrcData0	W4	Vss	Y14	Vss
N4	BigEndian	U3	NTrcData1	W5	V _{DD} PA2	Y15	SysAD37
N18	SysAD15	U4	NTrcData3	W6	Vss	Y16	SysAD39
N19	SysAD47	U18	SysAD10	W7	V _{DD} IO	Y17	SysAD40
N20	SysAD16	U19	SysAD42	W8	V _{DD}	Y18	V _{DD} IO
N21	SysAD48	U20	SysAD11	W9	JTDI	Y19	V _{DD} IO
P1	Vss	U21	SysAD43	W10	Vss	Y20	Vss
P2	Vss	V1	NTrcData2	W11	SysAD1	Y21	Vss
P3	Vss	V2	NTrcEnd	W12	V _{DD}	AA1	Vss
P4	Vss	V3	Vss	W13	SysAD35	AA2	Vss
P18	V _{DD}	V4	Vss	W14	Vss	AA3	V _{DD} IO
P19	V _{DD}	V5	VssPA2	W15	SysAD38	AA4	V _{DD} IO
P20	V _{DD}	V6	Vss	W16	V _{DD}	AA5	V _{DD} PA1
P21	SysAD46	V7	V _{DD} IO	W17	SysAD9	AA6	V _{DD} IO
R1	DivMode0	V8	V _{DD}	W18	Vss	AA7	IC
R2	DivMode1	V9	JTMS	W19	Vss	AA8	JTDO
R3	DivMode2	V10	Vss	W20	V _{DD} IO	AA9	DrvCon
R4	VDDIO	V11	SysAD33	W21	V _{DD} IO	AA10	Vss
R18	SysAD44	V12	V _{DD}	Y1	Vss	AA11	SysAD0
R19	SysAD13	V13	SysAD4	Y2	Vss	AA12	SysAD2
R20	SysAD45	V14	Vss	Y3	V _{DD} IO	AA13	SysAD34
R21	SysAD14	V15	SysAD7	Y4	V _{DD} IO	AA14	SysAD36
T1	V _{DD}	V16	V _{DD}	Y5	VssPA1	AA15	SysAD5
T2	V _{DD}	V17	SysAD41	Y6	SysClock	AA16	SysAD6
Т3	V _{DD}	V18	Vss	Y7	JTRST# (Vss)	AA17	SysAD8
T4	V _{DD}	V19	Vss	Y8	V _{DD}	AA18	VDDIO
T18	Vss	V20	V _{DD} IO	Y9	JTCK	AA19	VDDIO
T19	Vss	V21	V _{DD} IO	Y10	Vss	AA20	Vss
T20	Vss	W1	V _{DD} IO	Y11	SysAD32	AA21	Vss

Caution Leave the IC pin open.

Remarks 1. The name in parentheses indicates the pin name in the revision 1.x product.

2. # indicates active low.

NEC μ PD30550

PIN NAMES

Big Endian: Big endian PReq#: Processor request

BKTGIO#: Break/trigger input/output RdRdy#: Read ready
BusMode: Bus mode Release#: Release
ColdReset#: Cold reset Reset#: Reset

DisDValidO#: Disable delay ValidOut# SysAD(63:0): System address/data bus
DivMode(2:0): Divide mode SysADC(7:0): System address/data check

DrvCon: Driver control bus

DWBTrans#: Doubleword block transfer SysClock: System clock

ExtRqst#: SysCmd(8:0): System command/data

IC Internally connected identifier bus

Int(5:0)#:InterruptSysID(2:0):System bus identifierJTCK:JTAG clockTIntSel:Timer interrupt selection

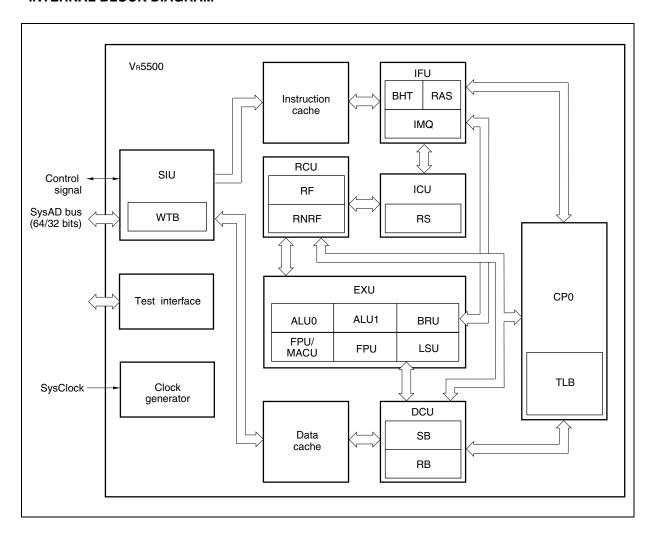
JTDI: JTAG data input ValidIn#: Valid input
JTDO: JTAG data output ValidOut#: Valid output

JTMS: JTAG mode select VDD: Power supply for CPU core

JTRST#: JTAG reset VDDIO: Power supply for I/O NMI#: VDDPA1, VDDPA2: Quiet VDD for PLL

NTrcClk: N-Trace clock Vss: Ground

NTrcData(3:0): N-Trace data output VssPA1, VssPA2: Quiet Vss for PLL


NTrcEnd: N-Trace end WrRdy#: Write ready

O3Return#: Out-of-Order Return mode

Remark # indicates active low.

INTERNAL BLOCK DIAGRAM

CONTENTS

1.	PIN F	UNCTIONS	8
	1.1	List of Pin Functions	8
	1.2	Recommended Connection of Unused Pins	12
2.	ELEC	TRICAL SPECIFICATIONS	14
3.	PACK	KAGE DRAWING	24
4.	RECO	DMMENDED SOLDERING CONDITIONS	25

1. PIN FUNCTIONS

Remark # indicates active low.

1.1 List of Pin Functions

(1) System interface signals

Pin Name	I/O	Function
SysAD(63:0)	I/O	System address/data bus A 64-bit bus for communication between the processor and external agent. The lower 32 bits (SysAD(31:0)) are used in 32-bit bus mode.
SysADC(7:0)	I/O	System address/data check bus A bus for SysAD bus parity. Valid only during a data cycle. The lower 4 bits (SysADC(3:0)) are used in 32-bit bus mode.
SysCmd(8:0)	I/O	System command/data ID bus A 9-bit bus that transfers command and data identifiers between the processor and external agent
SysID(2:0)	I/O	System bus protocol ID These signals transfer request identifiers in the out-of-order return mode. The processor drives a valid identifier in synchronization with the activation of the ValidOut# signal. The external agent must drive valid identifiers in synchronization with the activation of the ValidIn# signal.
ValidIn#	Input	Valid In A signal indicating that the external agent is driving a valid address or data onto the SysAD bus, a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the SysID bus in the out-of-order return mode.
ValidOut#	Output	Valid out A signal indicating that the processor is driving a valid address or data onto the SysAD bus, a valid command or data identifier onto the SysCmd bus, or a valid request identifier onto the SysID bus in the out-of-order return mode.
RdRdy#	Input	Read ready A signal indicating that the external agent is ready to accept a processor read request
WrRdy#	Input	Write ready A signal indicating that the external agent is ready to accept a processor write request
ExtRqst#	Input	External request A signal indicating that the external agent is requesting the right to use the system interface
Release#	Output	Releases interface A signal indicating that the processor is releasing the system interface to a slave state
PReq#	Output	Processor request A signal indicating that the processor has a request that is pending

(2) Initialization interface signals

(1/2)

Pin Name	I/O	Function
DivMode(2:0)	Input	Division mode These signals set the division ratio of PClock and SysClock as follows: 111: 5.5 110: 5 101: 4.5 100: 4 011: 3.5 010: 3 001: 2.5 000: 2 Set the input levels of these signals before a power-on reset. Make sure that the levels of these signals do not change while the VR5500 is operating.
BigEndian	Input	Endian mode This signal sets the byte ordering for addressing. 1: Big endian 0: Little endian Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500 is operating.
BusMode	Input	Bus mode This signal sets the bus width of the system interface. 1: 64 bits 0: 32 bits Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500 is operating.
TIntSel	Input	Interrupt source select This signal sets the interrupt source to be assigned to the IP7 bit of the Cause register. 1: Timer interrupt 0: Int5# input and external write request (SysAD5) Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500 is operating.
DisDValidO#	Input	ValidOut# delay enable 1: ValidOut# is active even while the address cycle is stalled 0: ValidOut# is active during the address issuance cycle only Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500 is operating.
DWBTrans#	Input	Doubleword block transfer enable (valid in 32-bit bus mode only) 1: Disabled 0: Enabled Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500 is operating.

Remark 1: High level, 0: Low level

(2/2)

Pin Name	I/O	Function
O3Return#	Input	Out-of-Order Return mode This signal sets the protocol of the system interface. 1: Normal mode 0: Out-of-order return mode Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500 is operating.
ColdReset#	Input	Cold reset This signal completely initializes the internal status of the processor. Deassert it in synchronization with SysClock.
Reset#	Input	Reset This signal logically initializes the internal status of the processor. Deassert it in synchronization with SysClock.
DrvCon	Input	Drive control This signal sets the impedance of the external output driver. 1: Low 0: Normal (recommended) Set the input level of this signal before a power-on reset. Make sure that the level of this signal does not change while the VR5500 is operating.
		Remark Applies to revision 2.0 or later products. Fixed to 0 in revision 1.x products.

Remark 1: High level, 0: Low level

The O3Return#, DWBTrans#, DisDValidO#, and BusMode signals are used for determining the protocol of the system interface. The protocol is selected as follows in accordance with the setting of these signals.

Protocol	O3Return#	DWBTrans#	DisDValidO#	BusMode
V _R 5000 [™] compatible	1	1	1	1
RM523x compatible	1	1	1	0
V _R 5432 native mode compatible	1	0	0	0
Out-of-order return mode	0	Arbitrary	Arbitrary	Arbitrary

Remark 1: High level, 0:Low level

RM523x is a product of PMC-Sierra, Inc.

(3) Interrupt interface signals

Pin Name	I/O	Function
Int(5:0)#	Input	Interrupt
		These are general-purpose processor interrupt requests. The input states can be checked by the Cause register.
		Whether Int5# is acknowledged or not depends on the status of the TIntSel signal during reset.
NMI#	Input	Non-maskable interrupt
		This is the non-maskable interrupt request.

(4) Clock interface signals

Pin Name	I/O	Function
SysClock	Input	System clock
		Clock input to the processor
V _{DD} PA1	-	V _{DD} for PLL
VDDPA2		Power supply for the internal PLL
VssPA1	_	Vss for PLL
VssPA2		Ground for the internal PLL

(5) Power supply

Pin Name	I/O	Function
V_{DD}	_	Power supply pin for core
V _{DD} IO	_	Power supply pin for I/O
Vss	_	Ground potential pin

Caution The V_R5500 uses two power supply pins. These power supply pins can be applied in any sequence. However, power must not be applied to one pin for 100 ms or longer while it is not applied to the other.

(6) Test interface signals

Pin Name	I/O	Function
NTrcData(3:0)	Output	Trace data
		Trace data output
NTrcEnd	Output	Trace end
		A signal that indicates the end of a trace data packet.
NTrcClk	Output	Trace clock
		Clock for the test interface. The same clock as SysClock is output.
RMode#/	I/O	Reset mode/break trigger I/O
BKTGIO#		A debug reset mode input signal while the JTRST# signal (ColdReset# signal for revision 1.x products) is active.
		It serves as a break or trigger I/O signal during normal operation.
JTDI	Input	JTAG data input
		Serial data input for JTAG
JTDO	Output	JTAG data output
		Serial data output for JTAG. Output is performed in synchronization with the fall of JTCK.
JTMS	Input	JTAG mode select
		This signal selects the JTAG test mode.
JTCK	Input	JTAG clock input
		Serial clock input for JTAG. The maximum frequency is 33 MHz. There is no need for it to be synchronized with SysClock.
JTRST#	Input	JTAG reset input
		A signal for initializing the JTAG test module.
		Remark Revision 2.0 or later products only.

1.2 Recommended Connection of Unused Pins

(1) System interface pins

(a) 32-bit bus mode

The V_R5500 allows selection of a SysAD bus width from 64 bits or 32 bits. When the 32-bit bus mode is selected, the V_R5500 operates using only the required system interface pins. Therefore, set the unused pins as follows when operating the V_R5500 in the 32-bit bus mode.

Pin Name	Recommended Connection of Unused Pins
SysAD(63:32)	Leave open
SysADC(7:4)	Leave open

(b) Normal mode

The V_R5500 can process read/write transactions regardless of the order in which requests are issued in the out-of-order return mode. The SysID(2:0) signals are used to identify each request during this processing. Set these signals, which are not used in the normal mode, as follows.

Pin Name	Recommended Connection
	of Unused Pins
SysID(2:0)	Leave open

(c) Parity bus

The V_R5500 allows selection of whether the data is protected using parity. When parity is used, the parity data is output from the processor or external agent to the SysADC bus.

However, whether the parity is used or not is selected by software, so unless the program is started, the V_R5500 cannot determine the operation of the SysADC bus. Therefore, care must be taken to prevent the SysADC bus from being left open or in a high-impedance state.

When parity is not used, it is recommended to connect each pin of the SysADC bus to VDDIO via a resistor with a high resistance value.

(2) Test interface pins

The V_R5500 can be used to perform testing and debugging with the device mounted on the board. The test interface pins are used for connection with the external debug tool during such debugging. Therefore set the test interface pins as follows when the debug function is not used and in the normal operation mode.

Pin Name	Recommended Connection of Unused Pins
JTCK	Pull up
JTDI	Pull up
JTMS	Pull up
JTRST# ^{Note}	Pull down
JTDO	Leave open
NTrcClk	Leave open
NTrcData(3:0)	Leave open
NTrcEnd	Leave open
RMode#/BKTGIO#	Pull up

Note Revision 2.0 or later products only.

2. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{DD} IO		-0.5 to +4.0	V
	V _{DD}		-0.5 to +2.0	V
	VDDP		-0.5 to +2.0	V
Input voltage ^{Note}	Vı		-0.5 to V _{DD} IO + 0.3	V
		Pulse of less than 7 ns	-1.5 to V _{DD} IO + 0.3	V
Operating case temperature	Tc		-10 to +85	°C
Storage temperature	T _{stg}		-40 to +125	°C

Note The upper limit of the input voltage (VDDIO + 0.3) is +4.0 V.

Cautions 1. Do not short-circuit two or more outputs at the same time.

2. Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

The specifications and conditions shown in the following DC Characteristics and AC Characteristics sections are the ranges within which the product can normally operate and the quality can be guaranteed.

Operating conditions

(1) 300 MHz product

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply voltage	VDDIO		2.375	2.625	٧
			3.135	3.465	V
	V _{DD}		1.425	1.575	V
	VDDP		1.425	1.575	V

Caution V_{DD} can also be used with the voltage range of the 400 MHz product (1.6 to 1.7 V). In this case, internal operation at 300 MHz is guaranteed. The supply current of the core block in this case is the specified value of the 400 MHz product (MAX. 1.8 A).

(2) 400 MHz product

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply voltage	VDDIO		2.375	2.625	V
			3.135	3.465	V
	V _{DD}		1.6	1.7	V
	V _{DD} P		1.6	1.7	V

Caution V_{DD} can also be used with the voltage range of the 300 MHz product (1.425 to 1.575 V). In this case, internal operation at 300 MHz is guaranteed. The supply current of the core block in this case is the specified value of the 300 MHz product (MAX. 1.4 A).

Supply Current

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Supply current of core block	IDD	300 MHz product, during normal		1.4	Α
		operation,			
		$V_{DD} = V_{DD}P = 1.575 V$			
		400 MHz product, during normal		1.8	Α
		operation,			
		$V_{DD} = V_{DD}P = 1.7 V$			
	loo_sb	300 MHz product, in standby mode,		0.35	Α
		$V_{DD} = V_{DD}P = 1.575 V$			
		400 MHz product, in standby mode,		0.45	Α
		$V_{DD} = V_{DD}P = 1.7 V$			

Remark The supply current in the I/O block varies depending on the application used. It is normally 20% I_{DD} or lower.

DC Characteristics

(1) When $V_{DD}IO = 2.5 V \pm 5\%$

(300 MHz product: $T_C = -10$ to $+85^{\circ}C$, $V_{DDIO} = 2.5$ V $\pm 5\%$, $V_{DD} = V_{DD}P = 1.5$ V $\pm 5\%$) (400 MHz product: $T_C = -10$ to $+85^{\circ}C$, $V_{DDIO} = 2.5$ V $\pm 5\%$, $V_{DD} = V_{DD}P = 1.6$ to 1.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	V _{DD} IO = MIN., I _{OH} = -4 mA	$0.8 \times V_{DDIO}$		V
Output voltage, low	Vol	VDDIO = MIN., IOL = 4 mA		0.4	V
Input voltage, high ^{Note 1}	ViH		2.0	V _{DD} IO + 0.3	V
Input voltage, low ^{Note 1}	VIL		-0.5	0.2 × V _{DD} IO	V
		Pulse of less than 7 ns	-1.5	0.2 × V _{DD} IO	V
Input voltage, high ^{Note 2}	VIHC		0.8 × VddIO	V _{DD} IO + 0.3	V
Input voltage, low ^{Note 2}	VILC		-0.5	0.2 × VDDIO	V
		Pulse of less than 7 ns	-1.5	0.2 × VDDIO	V
Input current leakage, high	Ішн	VI = VDDIO		5.0	μΑ
Input current leakage, low	luc	V _I = 0 V		-5.0	μΑ
Output current leakage, high	Ісон	Vo = VddIO		5.0	μΑ
Output current leakage, low	ILOL	Vo = 0 V		-5.0	μΑ

Notes 1. Does not apply to the SysClock pin.

2. Only applies to the SysClock pin.

(2) When $V_{DDIO} = 3.3 \text{ V} \pm 5\%$

(300 MHz product: $T_C = -10$ to $+85^{\circ}C$, $V_{DDIO} = 3.3$ V $\pm 5\%$, $V_{DD} = V_{DD}P = 1.5$ V $\pm 5\%$) (400 MHz product: $T_C = -10$ to $+85^{\circ}C$, $V_{DDIO} = 3.3$ V $\pm 5\%$, $V_{DD} = V_{DD}P = 1.6$ to 1.7 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Output voltage, high	Vон	VDDIO = MIN., IOH = -4 mA	2.4		V
Output voltage, low	Vol	VDDIO = MIN., IOL = 4 mA		0.4	V
Input voltage, high ^{Note 1}	VIH		2.0	V _{DD} IO + 0.3	V
Input voltage, low ^{Note 1}	VIL		-0.5	0.8	V
		Pulse of less than 7 ns	-1.5	0.8	V
Input voltage, high ^{Note 2}	VIHC		O.8 × VDDIO	V _{DD} IO + 0.3	V
Input voltage, low Note 2	VILC		-0.5	0.2 × VDDIO	V
		Pulse of less than 7 ns	-1.5	0.2 × VDDIO	٧
Input current leakage, high	Ішн	VI = VDDIO		5.0	μΑ
Input current leakage, low	ILIL	Vi = 0 V		-5.0	μΑ
Output current leakage, high	Ісон	Vo = VDDIO		5.0	μΑ
Output current leakage, low	ILOL	Vo = 0 V		-5.0	μΑ

Notes 1. Does not apply to the SysClock pin.

2. Only applies to the SysClock pin.

Power-on Sequence

The VR5500 uses two power supply pins. These power supply pins can be applied in any sequence. However, power must not be applied to one pin for 100 ms or longer while it is not applied to the other.

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Power-on delay	tof		0	100	ms

Capacitance (TA = 25°C, VDDIO = VDD = VDDP = 0 V)

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Input capacitance	Cin	fc = 1 MHz		5.0	pF
Output capacitance	Соит	Unmeasured pins returned to 0 V		7.0	pF

AC Characteristics

(300 MHz product: $T_C = -10$ to +85, $V_{DDIO} = 2.5$ V $\pm 5\%$, 3.3 V $\pm 5\%$, $V_{DD} = V_{DDP} = 1.5$ V $\pm 5\%$) (400 MHz product: $T_C = -10$ to +85, $V_{DDIO} = 2.5$ V $\pm 5\%$, 3.3 V $\pm 5\%$, $V_{DD} = V_{DDP} = 1.6$ to 1.7 V)

Clock parameters (1/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
System clock high-level width	tсн			1.8		ns
System clock low-level width	tcL			1.8		ns
Pipeline clock frequency		300 MHz pi	roduct	200	300	MHz
		400 MHz pi	roduct	200	400	MHz
System clock frequency ^{Note}		300 MHz	DivMode = 2:1	100	133	MHz
		product	DivMode = 2.5:1	80	120	MHz
			DivMode = 3:1	66.7	100	MHz
			DivMode = 3.5:1	57.2	85.7	MHz
			DivMode = 4:1	50	75	MHz
			DivMode = 4.5:1	44.5	66.6	MHz
			DivMode = 5:1	40	60	MHz
			DivMode = 5.5:1	36.4	54.5	MHz
		400 MHz	DivMode = 2:1	100	133	MHz
		product	DivMode = 2.5:1	80	133	MHz
			DivMode = 3:1	66.7	133	MHz
			DivMode = 3.5:1	57.2	114	MHz
			DivMode = 4:1	50	100	MHz
			DivMode = 4.5:1	44.5	88.8	MHz
			DivMode = 5:1	40	80	MHz
			DivMode = 5.5:1	36.4	72.7	MHz

Note This is the frequency at which the operation of the internal PLL is guaranteed.

Clock parameters (2/2)

Parameter	Symbol		Conditions	MIN.	MAX.	Unit
System clock cycle	tcp	300 MHz	DivMode = 2:1	7.5	10	ns
		product	DivMode = 2.5:1	8.3	12.5	ns
			DivMode = 3:1	10	15	ns
			DivMode = 3.5:1	11.7	17.5	ns
			DivMode = 4:1	13.3	20	ns
			DivMode = 4.5:1	15	22.5	ns
			DivMode = 5:1	16.7	25	ns
			DivMode = 5.5:1	18.3	27.5	ns
		400 MHz	DivMode = 2:1	7.5	10	ns
		product	DivMode = 2.5:1	7.5	12.5	ns
			DivMode = 3:1	7.5	15	ns
			DivMode = 3.5:1	8.8	17.5	ns
			DivMode = 4:1	10	20	ns
			DivMode = 4.5:1	11.3	22.5	ns
			DivMode = 5:1	12.5	25	ns
			DivMode = 5.5:1	13.8	27.5	ns
System clock jitter	tu				±5	%
System clock rise time	tcr				1.2	ns
System clock fall time	tcF				1.2	ns
JTAG clock frequency					33	MHz

Remarks 1. The system clock jitter is a cycle-to-cycle jitter.

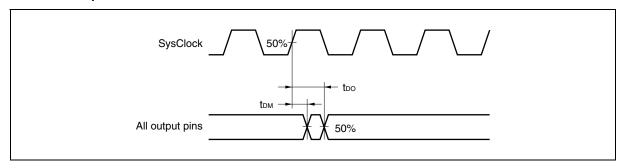
2. The JTAG clock runs asynchronously to the system clock.

System interface parameters

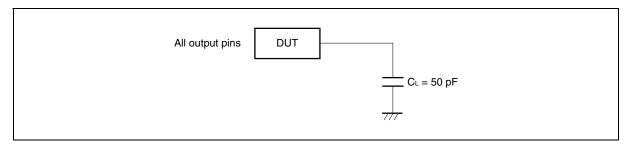
Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Data output hold time ^{Note 1}	tом		1.0		ns
Data output delay time ^{Note 1}	t□o			5.0	ns
Data input setup time ^{Note 2}	tos		1.5		ns
Data input hold time ^{Note 2}	tон	300 MHz product	1.0		ns
		400 MHz product	0.5		ns

Notes 1. Applies to the Release#, ValidOut#, SysAD(63:0), SysADC(7:0), SysCmd(8:0), and SysID(2:0) pins.

2. Applies to the ColdReset#, Reset#, Int(5:0), NMI#, ExtRqst#, RdRdy#, ValidIn#, SysAD(63:0), SysADC(7:0), SysCmd(8:0), and SysID(2:0) pins.

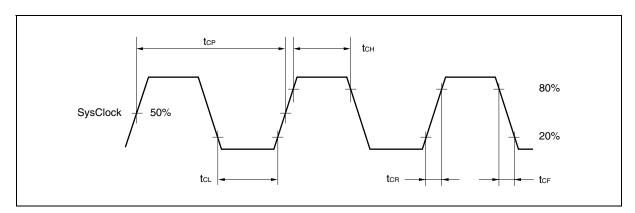

Load coefficient

Parameter	Symbol	Conditions	MIN.	MAX.	Unit
Load coefficient	CLD			1.0	ns/25 pF

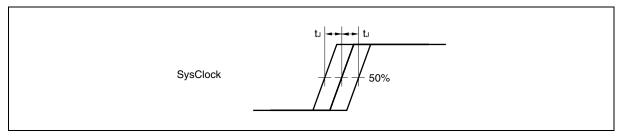


Measurement Conditions

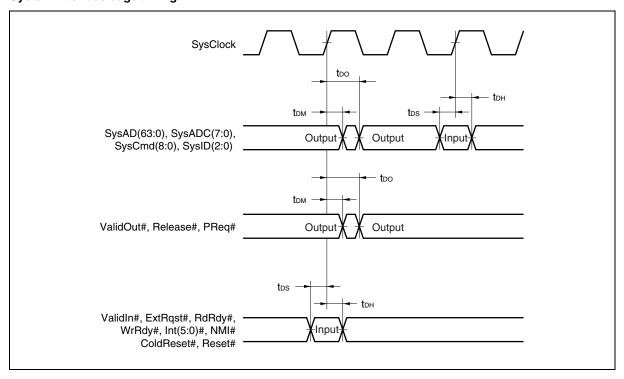
Measurement points

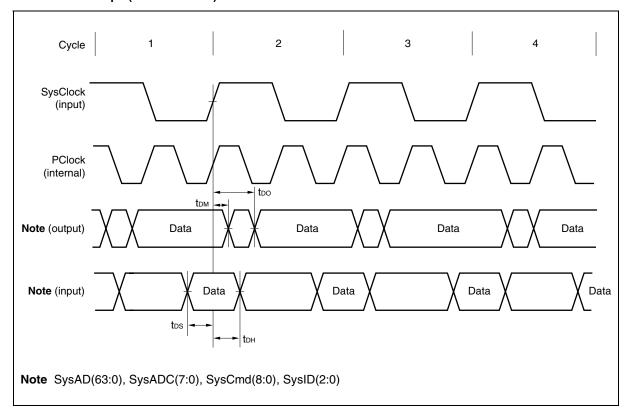


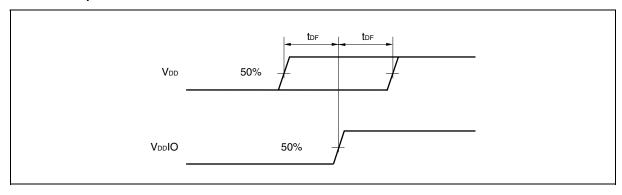
Load conditions



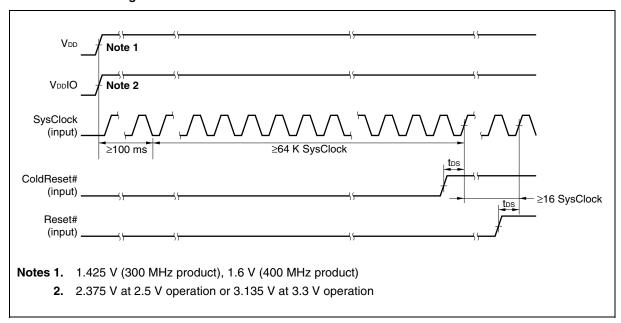
Timing Charts

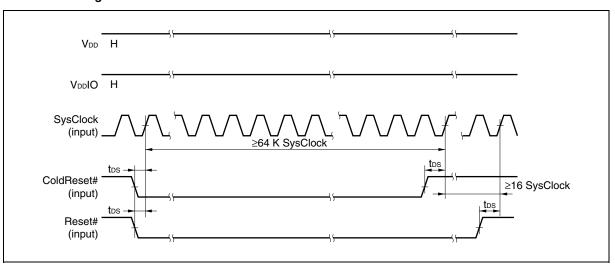

Clock timing


Clock jitter

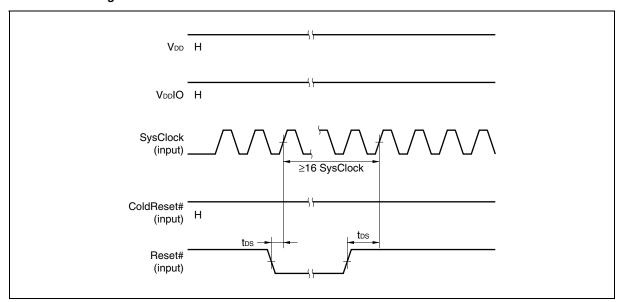

System interface edge timing

Clock relationships (DivMode = 2:1)

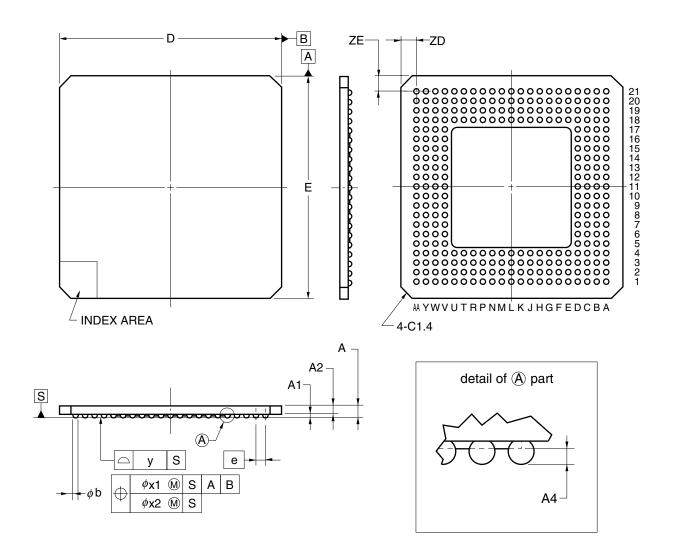

Power-on sequence



Reset Timing


Power-on reset timing

Cold reset timing



Warm reset timing

3. PACKAGE DRAWING

272-PIN PLASTIC BGA (CAVITY DOWN ADVANCED TYPE) (29x29)

ITEM	MILLIMETERS
D	29.00±0.20
E	29.00±0.20
е	1.27
Α	1.75±0.30
Α1	0.60±0.10
A2	1.15
A4	0.25MIN.
b	φ0.75±0.15
x1	0.30
x2	0.15
у	0.20
ZD	1.80
ZE	1.80
	P272F2-127-BA1

4. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions.

For details on the recommended soldering conditions, refer to the **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended below, contact an NEC sales representative.

Table 4-1. Surface mounting Type Soldering Conditions

 μ PD30550F2-300-NN1: 272-pin plastic BGA (C/D advanced type) (29 \times 29) μ PD30550F2-400-NN1: 272-pin plastic BGA (C/D advanced type) (29 \times 29)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared reflow	Package peak temperature: 235°C, Time: 30 seconds max. (at 210°C or higher), Count: Three times or less, Exposure limit: 3 days ^{Note} (after that, prebake at 125°C for 20 to 72 hours)	IR35-203-3

Note After opening the dry pack, store it at 25°C or less and 65% RH or less for the allowable storage period.

NOTES FOR CMOS DEVICES -

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Reference document Electrical Characteristics for Microcomputer (U15170J)^{Note} **Note** This document number is that of Japanese version.

The related documents indicated in the publication may include preliminary versions. However, preliminary versions are not marked as such.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- · Product release schedule
- · Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- · Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Sucursal en España

Madrid, Spain Tel: 091-504 27 87 Fax: 091-504 28 60

• Succursale Française

Vélizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

• Filiale Italiana

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

• Branch The Netherlands

Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

Branch Sweden

Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

United Kingdom Branch

Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd.

Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.

Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Shanghai, Ltd.

Shanghai, P.R. China Tel: 021-6841-1138 Fax: 021-6841-1137

NEC Electronics Taiwan Ltd.

Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore

Tel: 253-8311 Fax: 250-3583 VR5000, VR5000 Series, VR5432, VR5500, and VR Series are trademarks of NEC Corporation.

MIPS is a registered trademark of MIPS Technologies, Inc. in the United States.

Exporting this product or equipment that includes this product may require a governmental license from the U.S.A. for some countries because this product utilizes technologies limited by the export control regulations of the U.S.A.

- The information contained in this document is being issued in advance of the production cycle for the
 device. The parameters for the device may change before final production or NEC Corporation, at its own
 discretion, may withdraw the device prior to its production.
- Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written
 consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
 this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:
 - "Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.
 - Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
 - Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
 - Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.