Zilog

Product
Specification

Copyright 1982 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced without the written permission of Zilog, Inc.
The information in this publication is subject to change without notice.

Z8 ${ }^{\circledR}$ Family of Microcomputers Z8601•28603

Product Specification

September 1982

Z8601 Single-Chip Microcomputer with 2K ROM
Z8603 Prototyping Device with EPROM Interface

Features Complete microcomputer, 2K bytes of ROM, 128 bytes of RAM, 32 I/O lines, and up to 62 K bytes addressable external space each for program and data memory.

- 144-byte register file, including 124 general-purpose registers, four I/O port registers, and 16 status and control registers.
- Average instruction execution time of $2.2 \mu \mathrm{~s}$, maximum of $4.25 \mu \mathrm{~s}$.
- Vectored, priority interrupts for I/O, counter/timers, and UART.
- Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6-bit programmable prescaler.
- Register Pointer so that short, fast instructions can access any of nine working register groups in $1.5 \mu \mathrm{~s}$.
- On-chip oscillator which accepts crystal or external clock drive.
- Low-power standby option which retains contents of general-purpose registers.
- Single +5 V power supply-all pins TTLcompatible.

General

 DescriptionThe 28601 microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z 8601 offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Under program control, the $\mathrm{Z8601}$ can be tailored to the needs of its user. It can be con-
figured as a stand-alone microcomputer with 2 K bytes of internal ROM, a traditional microprocessor that manages up to 124 K bytes of external memory, or a parallel-processing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for I/O.

Figure 1. Pin Functions

Figure 2. Pin Assignments

Architecture

Z8601 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.
Microcomputer applications demand powerful I/O capabilities. The Z8601 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.
Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z8601 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a
microprocessor that can address 124 K bytes of external memory.

Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144-byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of userselectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.

Figure 3. Functional Block Diagram

Pin Description

$\overline{\mathbf{A S}}$. Address Strobe (output, active Low).
Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port 1 for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\text { DS. Data Strobe (output, active Low). Data }}$ Strobe is activated once for each external memory transfer.
$\mathbf{P 0}_{0}-\mathbf{P O}_{7}, \mathrm{P1}_{\mathbf{0}}-\mathrm{Pl}_{7}, \mathrm{P}_{\mathbf{0}}-\mathbf{P} \mathbf{2 1}_{7}, \mathrm{P}_{3_{0}}-\mathbf{P} 3_{7}$. I/O Port Lines (input/outputs, TTL-compatible). These 32 lines are divided into four 8 -bit I/O ports
that can be configured under program control for I/O or external memory interface.
RESET. Reset (input, active Low). $\overline{\text { RESET ini- }}$ tializes the Z8601. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathbf{W}}$. Read/Write (output). $\mathrm{R} / \overline{\mathrm{W}}$ is Low when the Z 8601 is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a seriesresonant crystal (8 MHz maximum) or an external single-phase clock (8 MHz maximum) to the on-chip clock oscillator and buffer.

Address
Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 2048 bytes consist of on-chip mask-programmed ROM. At addresses 2048 and greater, the Z8601 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The Z 8601 can address 62 K bytes of external data memory beginning at

Figure 4. Program Memory Map
locations 2048 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin P_{4}, is used to distinguish between data and program memory space.
Register File. The 144 -byte register file includes four I/O port registers (RO-R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.
Z8601 instructions can access registers

Figure 5. Data Memory Map

Figure 6. The Register File

Figure 7. The Register Pointer

Address Spaces

(Continued)
directly or indirectly with an 8-bit address field. The Z 8601 also allows short 4 -bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine workingregister groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active working-register group.

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 2048 and 65535. An 8 -bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

Serial
 Input/
 Output

Port 3 lines P_{0} and P_{7} can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits $/ \mathrm{sec}$ and.
The Z8601 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of

Transmitted Data
(With Parity)

parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request $\left(\mathrm{IRQ}_{4}\right)$ is generated on all transmitted characters.
Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the IRQ_{3} interrupt request.

Received Data

(No Parity)

Received Data
(With Parity)

Figure 8. Serial Data Formats

Counter/ Timers

The Z8601 contains two 8-bit programmable counter/timers (T_{0} and T_{1}), each driven by its own 6-bit programmable prescaler. The T_{1} prescaler can be driven by internal or external clock sources; however, the T_{0} prescaler is driven by the internal clock only.
The 6-bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (1 to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}\left(\mathrm{~T}_{1}\right)$-is generated.
The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-
pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not the prescalers, can be read any time without disturbing their value or count mode.
The clock source for T_{1} is user-definable and can be the internal microprocessor clock (4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock (1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the T_{0} output to the input of T_{1}. Port 3 line $P 3_{6}$ also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

The Z8601 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to
provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port 1 may be placed under handshake control. In this configuration, Port 3 lines P_{3} and P_{4} are used as the handshake controls RDY 1 and $\overline{\mathrm{DAV}}_{1}$ (Ready and Data Available).

Memory locations greater than 2048 are referenced through Port 1 . To interface external memory, Port l must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in the high-impedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$, allow-
ing the Z 8601 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning P_{3} as a Bus Acknowledge input and P_{4} as a Bus Request output.

Figure 9a. Port 1

Port 0 can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines P_{2} and $P 3_{5}$ are used as the handshake controls $\overline{D A V}_{0}$ and RDY $_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}-A_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as

I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the highimpedance state along with Port l and the control signals $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.

Figure 9b. Port 0

Port 2 bits can be programmed independently as input or output. The port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines P_{1} and P_{6} are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and RDY_{2}. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Figure 9c. Port 2

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input ($\mathrm{P}_{3}-\mathrm{P3}_{3}$) and four output ($\mathrm{P}_{4}-\mathrm{P3}_{7}$). For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0,1 and 2 ($\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals ($\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$); timer input and output signals ($\mathrm{T}_{\text {IN }}$ and $\mathrm{T}_{\text {OUT }}$) and Data Memory Select ($\overline{\mathrm{DM}}$).

The Z8601 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{0}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/ timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.

All Z8601 interrupts are vectored. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.
Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

Clock	The on-chip oscillator has a high-gain, series-resonant amplifier for connection to a crystal or to any suitable external clock source
(XTALl = Input, XTAL2 = Output).	
The crystal source is connected across	
	XTALl and XTAL2, using the recommended
capacitors (C $C_{1}=15 \mathrm{pF}$) from each pin to	

Power Down

 Standby OptionThe low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the V_{MM} (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTALl) rather than a crystal source.

The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 10 shows
ground. The specifications for the crystal are as follows:

- AT cut, series resonant
- Fundamental type, 8 MHz maximum
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$
the recommended circuit for a battery back-up supply system.

Figure 10. Recommended Driver Circuit for Power Down Operation

Z8603
Protopack Emulator

The Z8603 MPE (Protopack) is used for prototype development and preproduction of mask-programmed applications. The Protopack is a ROMless version of the standard Z8601, housed in a pin-compatible 40-pin package (Figure 11).
To provide pin compatibility and interchangeability with the standard maskprogrammed device, the Protopack carries (piggy-backs) a 24 -pin socket for a direct interface to program memory (Figure 1). The 24 -pin socket is equipped with 11 ROM address lines, 8 ROM data lines and necessary

Figure 11. The Z8603 Microcomputer Protopack Emulator
control lines for interface to 2716 EPROM for the first 2 K bytes of program memory.

Pin compatibility allows the user to design the pc board for a final 40 -pin maskprogrammed Z8601, and, at the same time, allows the use of the Protopack to build the prototype and pilot production units. When the final program is established, the user can then switch over to the 40 -pin mask-programmed Z8601 for large volume production. The Protopack is also useful in small volume applications where masked ROM setup time, mask charges, etc., are prohibitive and program flexibility is desired.

Compared to the conventional EPROM versions of the single-chip microcomputers, the Protopack approach offers two main advantages:

- Ease of developing various programs during the prototyping stage. For instance, in applications where the same hardware configuration is used with more than one program, the Z8603 Protopack allows economical program storage in separate EPROMs (or PROMs), whereas the use of separate EPROM-based single-chip microcomputers is more costly.
- Elimination of long lead time in procuring EPROM-based microcomputers.

Instruction
 Set Notation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
\mathbf{X} Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address
Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)

Assignment of a value is indicated by the symbol "-". For example,

$$
\mathrm{dst} \leftharpoondown \mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr (n) " is used to refer to bit " n " of a given location. For example, dst (7)
refers to bit 7 of the destination operand.
Flags. Control Register R252 contains the following six flags:

C Carry flag

Z Zero flag
S Sign flag
v Overflow flag
D Decimal-adjust flag
H Half-carry flag
Affected flags are indicated by:
0 Cleared to zero
1 Set to one

* Set or cleared according to operation
- Unaffected
x Undefined

Condition	Value	Mnemonic	Meaning	Flags Set
	1000		Always true	---
	0111	C	Carry	$\mathrm{C}=1$
	1111	NC	No carry	$\mathrm{C}=0$
	0110	Z	Zero	$\mathrm{Z}=1$
	1110	NZ	Not zero	$\mathrm{Z}=0$
	1101	PL	Plus	$S=0$
	0101	MI	Minus	$\mathrm{S}=1$
	0100	OV	Overflow	$\mathrm{V}=1$
	1100	NOV	No overflow	$\mathrm{V}=0$
	0110	EQ	Equal	$\mathrm{Z}=1$
	1110	NE	Not equal	$\mathrm{Z}=0$
	1001	GE	Greater than or equal	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=0$
	0001	LT	Less than	$(\mathrm{S} \mathrm{XOR} \mathrm{V})=1$
	1010	GT	Greater than	$[\mathrm{Z}$ OR (S XOR V) $]=0$
	0010	LE	Less than or equal	$[\mathrm{Z}$ OR (S XOR V)] $=1$
	1111	UGE	Unsigned greater than or equal	$\mathrm{C}=0$
	0111	ULT	Unsigned less than	$\mathrm{C}=1$
	1011	UGT	Unsigned greater than	$(\mathrm{C}=0$ AND $\mathrm{Z}=0)=1$
	0011	ULE	Unsigned less than or equal	$(\mathrm{COR}$ Z $)=1$
	0000		Never true	---

Instruction
 Formats

OPC	CCF, DI, EI, IRET, NOP, RCF, RET, SCF
dst	OPC

One-Byte Instructions

Two-Byte Instructions

Figure 12. Instruction Formats

Instruction and Operation	Addr Mode	Opcode Byte (Hex)	$\frac{\text { Flags Affected }}{\text { C Z S V D H }}$
	dst src		
ADC dst,src $\mathrm{dst}-\mathrm{dst}+\mathrm{src}+\mathrm{C}$	(Note 1)	$1 \square$	* * * * 0
ADD dst,src dst - dst + src	(Note 1)	$0 \square$	* * * * 0 *
AND dst,src dst - dst AND src	(Note 1)	$5 \square$	- * * 0 - -
$\begin{aligned} & \text { CALL dst } \\ & \mathrm{SP}-\mathrm{SP}-2 \\ & \text { @SP }-\mathrm{PC} ; \mathrm{PC}-\mathrm{dst} \end{aligned}$	$\begin{aligned} & \text { DA } \\ & \text { IRR } \end{aligned}$	$\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$	-----
$\begin{aligned} & \text { CCF } \\ & \mathrm{C}-\mathrm{NOT} \mathrm{C} \end{aligned}$		EF	* - - -
$\begin{aligned} & \overline{\text { CLR dst }} \begin{array}{l} \text { dst }-0 \end{array} \end{aligned}$	$\begin{aligned} & \hline \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \mathrm{BO} \\ & \mathrm{Bl} \end{aligned}$	-
$\begin{aligned} & \text { COM dst } \\ & \mathrm{dst}-\mathrm{NOT} \text { dst } \end{aligned}$	$\begin{aligned} & \hline R \\ & \mathrm{R} \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	- * * 0 -
$\begin{aligned} & \text { CP dst,src } \\ & \text { dst - src } \end{aligned}$	(Note 1)	A \square	*
DA dst dst - DA dst	$\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	* * * X -
DEC dst dst - dst - 1	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{aligned} & 00 \\ & 01 \end{aligned}$	- * * * - -
DECW dst dst - dst - 1	$\underset{\mathrm{IR}}{\mathrm{RR}}$	$\begin{aligned} & 80 \\ & 81 \end{aligned}$	- * * * -
$\begin{aligned} & \text { DI } \\ & \operatorname{IMR}(7)-0 \end{aligned}$		8F	-----
$\begin{aligned} & \text { DJNZ r,dst } \\ & r-r-1 \end{aligned}$	RA	$\stackrel{r A}{r=0-F}$	------

if $\mathrm{r} \neq 0$

PC - PC + dst
Range: $+127,-128$

EI		9F	$-\cdots----$
IMR (7)-1			
INC dst	r	rE	$-* * *--$

dst - dst +1	$\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$	$\begin{gathered} r=0-F \\ 20 \\ 21 \end{gathered}$	
INCW dst $\mathrm{dst}-\mathrm{dst}+1$	$\begin{aligned} & \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$	$\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$	- * * * - -
IRET		BF	* * * *

FLAGS - @ SP; SP $-\mathrm{SP}+1$

JP cc,dst	DA	cD	----- -
if Cc is true PC - dst	IRR	$c=0-F$	
IR cc, dst	RA	cB	--- - -

if cc is true,
PC - PC + dst
Range: +127, -128

LD dst,src $\mathrm{dst} \sim \mathrm{src}$	$\begin{gathered} \mathrm{r} \\ \mathrm{r} \\ \mathrm{R} \\ \\ \mathrm{r} \\ \mathrm{X} \\ \mathrm{r} \\ \mathrm{Ir} \\ \mathrm{R} \\ \mathrm{R} \\ \mathrm{R} \\ \mathrm{IR} \\ \mathrm{IR} \end{gathered}$	$\begin{gathered} \mathrm{Im} \\ \mathrm{R} \\ \mathrm{r} \\ \mathrm{X} \\ \mathrm{X} \\ \mathrm{r} \\ \mathrm{Ir} \\ \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \\ \mathrm{Im} \\ \mathrm{Im} \\ \mathrm{R} \end{gathered}$	$\begin{gathered} \mathrm{rC} \\ \mathrm{r} 8 \\ \mathrm{r} 9 \\ \mathrm{r}=0-\mathrm{F} \\ \mathrm{C7} \\ \mathrm{D} 7 \\ \text { E3 } \\ \text { F3 } \\ \text { E4 } \\ \text { E5 } \\ \text { E6 } \\ \text { E7 } \\ \text { F5 } \end{gathered}$	- - - - -
LDC dst, src dst \leftarrow src	$\begin{gathered} \mathrm{r} \\ \mathrm{Irr} \end{gathered}$	$\underset{\mathrm{r}}{\mathrm{Ir}}$	$\begin{aligned} & \mathrm{C} 2 \\ & \mathrm{D} 2 \end{aligned}$	- - - - -
LDCI dst,src dst - src $\mathrm{r}-\mathrm{r}+\mathrm{l}$; r	$\begin{aligned} & \mathrm{Ir} \\ & \mathrm{Irr} \end{aligned}$	$\begin{gathered} \text { Irr } \\ \text { Ir } \end{gathered}$	$\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$	- - - - -

R240 SIO
Serial I/O Register
(FO_{H}; Read/Write)

\square SERIAL DATA ($\mathrm{D}_{0}=$ LSB $)$

R241 TMR

Timer Mode Register
(Fl_{H}; Read/Write)

R242 T1
Counter Timer 1 Register
(F_{H}; Read/Write)

R243 PRE1
Prescaler 1 Register
($\mathrm{F3}_{\mathrm{H}}$; Write Only)

D_{7}	$D_{6} \mid D_{5}$
D_{4}	$D_{3} \mid$
D_{2}	D_{1}

R244 T0

Counter/Timer 0 Register

(F_{H}; Read/Write)

T_{0} INITIAL VALUE (WHEN WRITTEN) (RANGE: 1-256 DECIMAL 01-00 HEX) T_{0} CURRENT VALUE (WHEN READ)

R245 PREO

Prescaler 0 Register
($\mathrm{F5}_{\mathrm{H}}$; Write Only)

R246 P2M
Port 2 Mode Register
(F_{H}; Write Only)

R247 P3M
Port 3 Mode Register
($\mathrm{F7}_{\mathrm{H}}$; Write Only)

Figure 13. Control Registers

Registers

(Continued)

R248 P01M
Port 0 and 1 Mode Register
(FB_{H}; Write Only)

R249 IPR
Interrupt Priority Register
($\mathrm{F9}_{\mathrm{H}}$; Write Only)

R250 IRQ Interrupt Request Register
(FA_{H}; Read/Write)

D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}

$\operatorname{IRQO}=\mathrm{P}_{2} \operatorname{INPUT}\left(\mathrm{D}_{0}=\mathrm{IRQO}\right)$楊: IRQ3 $=\mathrm{P}_{3}$ INPUT, SERIAL INPUT IRQ4 $=T_{0}$, SERIAL OUTPUT IRQ5 $=T_{1}$

R251 IMR
Interrupt Mask Register
(FB_{H}; Read/Write)

Figure 13. Control Registers

Legend:
$\mathrm{R}=8$-Bit Address
$\mathrm{r}=4$-Bit Address
R_{1} or $\mathrm{r}_{1}=$ Dst Address
R_{2} or $\mathrm{r}_{2}=$ Src Address

Sequence:

Opcode, First Operand, Second Operand
Note: The blank areas are not defined.

Absolute	Voltages on all pins
Maximum	with respect to GND - -0.3 V to +7.0 V
Ratings	Operating Ambient
	Temperature See Ordering Information
	Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Standard Test
Conditions

The characteristics below apply for the
$\square+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V}$ following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:
\square GND $=0 \mathrm{~V}$
$\square 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}^{*}$
*See Ordering Information section for package temperature range and product number.

Figure 14. Test Load 1

Figure 15. Test Load 2

Figure 16. External Clock Interface Circuit

DC Characteristics	Symbol	ol Parameter	Min	Max	Unit	Condition
	V_{CH}	Clock Input High Voltage	3.8	V_{CC}	V	Driven by External Clock Generator
	$\mathrm{V}_{\text {CL }}$	Clock Input Low Voltage	-0.3	0.8	V	Driven by External Clock Generator
	$\mathrm{V}_{\text {IH }}$	Input High Voltage	2.0	V_{CC}	V	
	$\mathrm{V}_{\text {IL }}$	Input Low Voltage	-0.3	0.8	V	
	$\mathrm{V}_{\text {RH }}$	Reset Input High Voltage	3.8	V_{CC}	V	
	$\mathrm{V}_{\text {RL }}$	Reset Input Low Voltage	-0.3	0.8	V	
	V_{OH}	Output High Voltage	2.4		V	$\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$
	$\mathrm{V}_{\text {OL }}$	Output Low Voltage		0.4	V	$\mathrm{I}_{\mathrm{OL}}=+2.0 \mathrm{~mA}$
	$\mathrm{I}_{\text {IL }}$	Input Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
	$\mathrm{I}_{\text {OL }}$	Output Leakage	-10	10	$\mu \mathrm{A}$	$0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$
	I_{IR}	Reset Input Current		-50	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$
	I_{CC}	$\mathrm{V}_{\text {CC }}$ Supply Current		180	mA	
	$\mathrm{I}_{\text {MM }}$	V_{MM} Supply Current		10	mA	Power Down Mode
	$\mathrm{V}_{\text {MM }}$	Backup Supply Voltage	3	V_{CC}	V	Power Down

External I/O or Memory Read and Write Timing

Figure 17. External I/O or Memory Read/Write

No.	Symbol	Parameter	28601/3		28601/3-12		Notes* \dagger
			Min	Max	Min	Max	
1	TdA(AS)	Address Valid to $\overline{A S} \dagger$ Delay	50		35		1,2,3
2	TdAS(A)	$\overline{\overline{A S}} 1$ to Address Float Delay	70		45		1,2,3
3	TdAS(DR)	$\overline{\overline{A S}} \mathrm{t}$ to Read Data Required Valid		360		220	1,2,3,4
4	TwAS	$\overline{\overline{A S}}$ Low Width	80		55		1,2,3
5	TdAz(DS)	Address Float to $\overline{\text { DS }}$!	0		0		1
6 -TwDSR —— $\overline{\mathrm{DS}}$ (Read) Low Width —— 250 - 185 - $112,3,4$							
7	TwDSW	$\overline{\mathrm{DS}}$ (Write) Low Width	160		110		1,2,3,4
8	TdDSR(DR)	$\overline{\mathrm{DS}} \cdot$ to Read Data Required Valid		200		130	1,2,3,4
9	ThDR(DS)	Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time	0		0		1
10	TdDS(A)	$\overline{\overline{D S}} \mathrm{t}$ to Address Active Delay	70		45		1,2,3
11	TdDS(AS)	$\overline{\mathrm{DS}} \dagger$ to $\overline{\mathrm{AS}}$! Delay	70		55		1,2,3
13	TdDS(R/W)	$\overline{\mathrm{DS}} \boldsymbol{t}$ to $\mathrm{R} / \overline{\mathrm{W}}$ Not Valid	60		35		1,2,3
14	TdDW(DSW)	Write Data Valid to $\overline{\mathrm{DS}}$ (Write) ! Delay	50		35		1,2,3
15	TdDS(DW)	$\overline{\mathrm{DS}} \mathrm{t}$ to Write Data Not Valid Delay	70		45		1,2,3
16	TdA(DR)	Address Valid to Read Data Required Valid		410		255	1,2,3,4
17	TdAS(DS)	$\overline{\text { AS }} 1$ to $\overline{\mathrm{DS}}$! Delay	80		55		1,2,3

NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC .
3. Also see clock cycle time dependent characteristics table.

When using extended memory timing add 2 TpC .
5. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic "0" * All units in nanoseconds (ns).
\dagger Timings are preliminary and subject to change.

Additional Timing Table

Figure 18. Additional Timing

NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for 3. Interrupt request via Port 3.
a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for

* Units in nanoseconds (ns).
a logic " 0 ".
\dagger Timings are preliminary and subject to change.

Figure 19. Memory Port Timing

			Z8601/3		Z8601/3	
No.	Symbol	Parameter	Min	Max	Min	Max

NOTES:

1. Test Load 2
2. This is a Clock-Cycle-Dependent parameter. For clock frequen-
cies other than the maximum, use the following formula:
Z8601/3 $=5 \mathrm{TpC}-165$
Z8601/3-12 $=5 \mathrm{TpC}-95$

Handshake

Timing

Figure 20a. Input Handshake

Figure 20b. Output Handshake

	Symbol	Parameter	Z8601/3		Z8601/3-12		Notes* \dagger	
			Min	Max	Min	Max		
1	TsDİ(DAV)	Data In Setup Time	0		0			
2	ThDI(DAV)	Data In Hold Time	230		160			
3	TwDAV	Data Available Width	175		120			
4	TdDAVIf(RDY)	$\overline{\text { DAV }!~ I n p u t ~ t o ~ R D Y ~!~ D e l a y ~}$		175		120	1,2	
$5-\mathrm{TdDAVOf}(\mathrm{RDY})-\overline{\mathrm{DAV}} \mid$ Output to RDY \mid Delay $\longrightarrow 0-0-1,3$								
6	TdDAVIr(RDY)	$\overline{\text { DAV } \dagger \text { Input to RDY } \dagger \text { Delay }}$		175		120	1,2	
7	TdDAVOrRDY)	$\overline{\text { DĀV } \dagger \text { Output to RDY } \mid \text { Delay }}$	0		0		1,3	
8	TdDO(DAV)	Data Out to $\overline{\mathrm{DAV}} \downarrow$ Delay	50		30		1	
9	TdRDY(DAV)	Rdy \\| Input to $\overline{\mathrm{DAV}} \uparrow$ Delay	0	200	0	140	1	
NOTES:								
2. Input handshake \dagger Timings are preliminary and subject to change.								
3. Output handshake 4. All timing regerences use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".								

Clock-Cycle-Time-	Number	Symbol	Z8601/3 Equation	Z8601/3-12 Equation
Dependent	1	$\operatorname{Td} A(A S)$	TpC-75	TpC-50
Characteristics	2	$\mathrm{Td} A \mathrm{~S}(\mathrm{~A})$	TpC-55	TpC-40
	3	TdAS(DR)	4TpC-140*	4TpC-110*
	4	TwAS	TpC-45	$\mathrm{TpC}-30$
	6	TwDSR	3TpC-125*	-3TpC-65*
	7	TwDSW	2TpC-90*	2TpC-55*
	8	TdDSR(DR)	3TpC-175*	3TpC-120*
	10	Td(DS)A	TpC-55	TpC-40
	11	$\operatorname{TdDS}(\mathrm{AS})$	TpC-55	TpC-30
	12	TdR/W(AS)	TpC-75	- TpC-55
	13	TdDS(R/W)	TpC-65	TpC-50
	14	TdDW(DSW)	TpC-75	TpC-50
	15	TdDS(DW)	TpC-55	TpC-40
	16	TdA(DR)	5TpC-215*	$5 \mathrm{TpC-160}$ *
	17	TdAS(DS)	TpC-45	TpC-30

[^0]

Package

 Dimensions (Continued)

40-Pin Cerdip Package

44-Pin Leadless Package

Package
Dimensions
(Continued)

40-Pin Plastic Package

40-Pin Protopack Package

Zilog Offices

West
Sales \& Technical Center Zilog, Incorporated 1315 Dell Avenue Campbell, CA 95008
Phone: (408) 370-8120
TWX: 910-338-7621
Sales \& Technical Center Zilog, Incorporated 18023 Sky Park Circle Suite J
Irvine, CA 92714
Phone: (714) 549-2891
TWX: 910-595-2803
Sales \& Technical Center Zilog, Incorporated 15643 Sherman Way Suite 430
Van Nuys, CA 91406
Phone: (213) 989-7485 TWX: 910-495-1765

Sales \& Technical Center Zilog, Incorporated 1750 112th Ave. N.E. Suite Dl61
Bellevue, WA 98004
Phone: (206) 454-5597

Midwest
Sales \& Technical Center Zilog, Incorporated 951 North Plum Grove Road Suite F
Schaumburg, IL 60195
Phone: (312) 885-8080 TWX: 910-291-1064

Sales \& Technical Center
Zilog, Incorporated 28349 Chagrin Blvd. Suite 109
Woodmere, OH 44122
Phone: (216) 831-7040
FAX: 216-831-2957

South

Sales \& Technical Center Zilog, Incorporated 4851 Keller Springs Road, Suite 211
Dallas, TX 75248
Phone: (214) 931-9090
TWX: 910-860-5850
Zilog, Incorporated
7113 Burnet Rd.
Suite 207
Austin, TX 78757
Phone: (512) 453-3216

Sales \& Technical Center Zilog, Incorporated
Corporate Place
99 South Bedford St.
Burlington, MA 01803
Phone: (617) 273-4222
TWX: 710-332-1726
Sales \& Technical Center Zilog, Incorporated 240 Cedar Knolls Rd. Cedar Knolls, NJ 07927
Phone: (201) 540-1671
Technical Center Zilog, Incorporated 3300 Buckeye Rd. Suite 401
Atlanta, GA 30341
Phone: (404) 451-8425
Sales \& Technical Center
Zilog, Incorporated
1442 U.S. Hwy 19 South
Suite 135
Clearwater, FL 33516
Phone: (813) 535-5571
Zilog, Inc.
613-B Pitt St.
Cornwall, Ontario
Canada K6J 3R8
Phone: (613) 938-1121

United Kingdom

Zilog (U.K.) Limited Zilog House
43-53 Moorbridge Road
Maidenhead
Berkshire, SL6 8PL England
Phone: 0628-39200
Telex: 848609

France

Zilog, Incorporated
Tour Europe
Cedex 7
92080 Paris La Defense

France

Phone: (1) 778-14-33
Telex: 611445F

West Germany

Zilog GmbH
Eschenstrasse 8
D-8028 TAUFKIRCHEN
Munich, West Germany
Phone: 89-612-6046
Telex: 529110 Zilog d.

Japan

Zilog, Japan K.K. Konparu Bldg. 5F 2-8 Akasaka 4-Chome Minato-Ku, Tokyo 107 Japan
Phone: (81) (03) 587-0528
Telex: 2422024 A/B: Zilog J

[^0]: * Add 2 TpC when using extended memory timing

