## Z8 ${ }^{\text {® }}$ Family of <br> Microcomputers

Z8611•Z8612•Z8613

## Product Specification

September 1982


Copyright 1982 by Zilog, Inc. All rights reserved. No part of this publication may be reproduced without the written permission of Zilog, Inc.
The information in this publication is subject to change without notice.

Zilog

## Product Specification

September 1982

Z8611 Single-Chip Microcomputer with 4K ROM
Z8612 Development Device with Memory Interface Z8613 Prototyping Device with EPROM Interface

Features

- Complete microcomputer, 4 K bytes of ROM 128 bytes of RAM, 32 I/O lines, and up to 60K bytes addressable external space each for program and data memory
- 144-byte register file, including 124 general-purpose registers, four I/O port registers, and 16 status and control registers.
- Average instruction execution time of $2.2 \mu \mathrm{~s}$, maximum of $4.25 \mu \mathrm{~s}$.
- Vectored, priority interrupts for I/O, counter/timers, and UART.

Full-duplex UART and two programmable 8 -bit counter/timers, each with a 6 -bit programmable prescaler.

- Register Pointer so that short, fast instructions can access any of nine workingregister groups in $1.5 \mu \mathrm{~s}$.
- On-chip oscillator which accepts crystal or external clock drive.
- Low-power standby option which retains contents of general-purpose registers.
- Single +5 V power supply-all pins TTL compatible.

General Description

The Z861l microcomputer introduces a new level of sophistication to single-chip architecture. Compared to earlier single-chip microcomputers, the Z861l offers faster execution; more efficient use of memory; more sophisticated interrupt, input/output and bit-manipulation capabilities; and easier system expansion.

Under program control, the Z861l can be tailored to the needs of its user. It can be con-

Figure 1. Z8611 MCU Pin Functions

figured as a stand-alone microcomputer with 4 K bytes of internal ROM, a traditional microprocessor that manages up to 120 K bytes of external memory, or a parallel-processing element in a system with other processors and peripheral controllers linked by the Z-BUS. In all configurations, a large number of pins remain available for I/O.


Figure 2. Z8611 MCU Pin Assignments

Z8611 architecture is characterized by a flexible I/O scheme, an efficient register and address space structure and a number of ancillary features that are helpful in many applications.

Microcomputer applications demand powerful I/O capabilities. The Z8611 fulfills this with 32 pins dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable under software control to provide timing, status signals, serial or parallel I/O with or without handshake, and an address/data bus for interfacing external memory.

Because the multiplexed address/data bus is merged with the I/O-oriented ports, the Z8611 can assume many different memory and I/O configurations. These configurations range from a self-contained microcomputer to a
microprocessor that can address 120 K bytes of external memory (Figure 3).
Three basic address spaces are available to support this wide range of configurations: program memory (internal and external), data memory (external) and the register file (internal). The 144 -byte random-access register file is composed of 124 general-purpose registers, four I/O port registers, and 16 control and status registers.

To unburden the program from coping with real-time problems such as serial data communication and counting/timing, an asynchronous receiver/transmitter (UART) and two counter/timers with a large number of userselectable modes are offered on-chip. Hardware support for the UART is minimized because one of the on-chip timers supplies the bit rate.


Figure 3. Functional Block Diagram

## Pin Description

$\overline{\text { AS. }}$ Address Strobe (output, active Low).
Address Strobe is pulsed once at the beginning of each machine cycle. Addresses output via Port $l$ for all external program or data memory transfers are valid at the trailing edge of $\overline{\mathrm{AS}}$. Under program control, $\overline{\mathrm{AS}}$ can be placed in the high-impedance state along with Ports 0 and 1, Data Strobe and Read/Write.
$\overline{\text { DS. }}$ Data Strobe (output, active Low). Data Strobe is activated once for each external memory transfer.
$\mathbf{P O}_{\mathbf{0}}-\mathrm{PO}_{7}, \mathrm{P1}_{\mathbf{0}}-\mathrm{Pl}_{\mathbf{7}}, \mathrm{P}_{\mathbf{0}}-\mathbf{P} \mathbf{P}_{7}, \mathrm{P}_{\mathbf{0}}-\mathbf{P} 3_{7}$. I/O Port Lines (input/outputs, TTL-compatible). These 32 lines are divided into four 8 -bit I/O ports
that can be configured under program control for I/O or external memory interface.
$\overline{\text { RESET. Reset (input, active Low). } \overline{\mathrm{RESET}} \text { ini- }}$ tializes the Z8611. When RESET is deactivated, program execution begins from internal program location $000 \mathrm{C}_{\mathrm{H}}$.
$\mathbf{R} / \overline{\mathrm{W}}$. Read/Write (output). R/W is Low when the Z 8611 is writing to external program or data memory.
XTAL1, XTAL2. Crystal 1, Crystal 2 (time-base input and output). These pins connect a seriesresonant crystal ( 8 MHz maximum) or an external single-phase clock ( 8 MHz maximum) to the on-chip clock oscillator and buffer.

Address Spaces

Program Memory. The 16 -bit program counter addresses 64 K bytes of program memory space. Program memory can be located in two areas: one internal and the other external (Figure 4). The first 4096 bytes consist of on-chip mask-programmed ROM. At addresses 4096 and greater, the Z8611 executes external program memory fetches.

The first 12 bytes of program memory are reserved for the interrupt vectors. These locations contain six 16 -bit vectors that correspond to the six available interrupts.
Data Memory. The Z86ll can address 60K bytes of external data memory beginning at


Figure 4. Program Memory Map
locations 4096 (Figure 5). External data memory may be included with or separated from the external program memory space. $\overline{\mathrm{DM}}$, an optional I/O function that can be programmed to appear on pin $\mathrm{P}_{4}$, is used to distinguish between data and program memory space.
Register File. The 144 -byte register file includes four I/O port registers (RO-R3), 124 general-purpose registers (R4-R127) and 16 control and status registers (R240-R255). These registers are assigned the address locations shown in Figure 6.
Z8611 instructions can access registers


Figure 5. Data Memory Map


Figure 6. The Register File


Figure 7. The Register Pointer

## Address Spaces

(Continued)
directly or indirectly with an 8-bit address field. The Z8611 also allows short 4-bit register addressing using the Register Pointer (one of the control registers). In the 4 -bit mode, the register file is divided into nine workingregister groups, each occupying 16 contiguous locations (Figure 7). The Register Pointer addresses the starting location of the active working-register group.

Stacks. Either the internal register file or the external data memory can be used for the stack. A 16-bit Stack Pointer (R254 and R255) is used for the external stack, which can reside anywhere in data memory between locations 4096 and 65535 . An 8 -bit Stack Pointer (R255) is used for the internal stack that resides within the 124 general-purpose registers (R4-R127).

## Serial Input/ Output

Port 3 lines $\mathrm{P}_{0}$ and $\mathrm{P}_{7}$ can be programmed as serial I/O lines for full-duplex serial asynchronous receiver/transmitter operation. The bit rate is controlled by Counter/Timer 0, with a maximum rate of 62.5 K bits/second.

The Z8611 automatically adds a start bit and two stop bits to transmitted data (Figure 8). Odd parity is also available as an option. Eight data bits are always transmitted, regardless of

## Transmitted Data

(No Parity)


Transmitted Data
(With Parity)

parity selection. If parity is enabled, the eighth bit is the odd parity bit. An interrupt request $\left(I R Q_{4}\right)$ is generated on all transmitted characters.
Received data must have a start bit, eight data bits and at least one stop bit. If parity is on, bit 7 of the received data is replaced by a parity error flag. Received characters generate the $\mathrm{IRQ}_{3}$ interrupt request.


Figure 8. Serial Data Formats

## Counter/ Timers

The Z8611 contains two 8-bit programmable counter/timers ( $\mathrm{T}_{0}$ and $\mathrm{T}_{1}$ ), each driven by its own 6-bit programmable prescaler. The $\mathrm{T}_{1}$ prescaler can be driven by internal or external clock sources; however, the $T_{0}$ prescaler is driven by the internal clock only.

The 6 -bit prescalers can divide the input frequency of the clock source by any number from 1 to 64. Each prescaler drives its counter, which decrements the value (l to 256) that has been loaded into the counter. When the counter reaches the end of count, a timer interrupt request- $\mathrm{IRQ}_{4}\left(\mathrm{~T}_{0}\right)$ or $\mathrm{IRQ}_{5}\left(\mathrm{~T}_{1}\right)$ is generated.

The counters can be started, stopped, restarted to continue, or restarted from the initial value. The counters can also be programmed to stop upon reaching zero (single-
pass mode) or to automatically reload the initial value and continue counting (modulo-n continuous mode). The counters, but not'the prescalers, can be read any time without disturbing their value or count mode.
The clock source for $T_{1}$ is user-definable and can be the internal microprocessor clock ( 4 MHz maximum) divided by four, or an external signal input via Port 3. The Timer Mode register configures the external timer input as an external clock ( 1 MHz maximum), a trigger input that can be retriggerable or non-retriggerable, or as a gate input for the internal clock. The counter/timers can be programmably cascaded by connecting the $\mathrm{T}_{0}$ output to the input of $T_{1}$. Port 3 line $P 36$ also serves as a timer output (TOUT) through which $\mathrm{T}_{0}, \mathrm{~T}_{1}$ or the internal clock can be output.

The Z8611 has 32 lines dedicated to input and output. These lines are grouped into four ports of eight lines each and are configurable as input, output or address/data. Under software control, the ports can be programmed to
provide address outputs, timing, status signals, serial I/O, and parallel I/O with or without handshake. All ports have active pull-ups and pull-downs compatible with TTL loads.

Port 1 can be programmed as a byte I/O port or as an address/data port for interfacing external memory. When used as an I/O port, Port l may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{3}$ and $\mathrm{P}_{4}$ are used as the handshake controls RDY ${ }_{1}$ and $\overline{\mathrm{DAV}}_{1}$ (Ready and Data Available).
Memory locations greater than 4096 are referenced through Port l. To interface external memory, Port 1 must be programmed for the multiplexed Address/Data mode. If more than 256 external locations are required, Port 0 must output the additional lines.

Port 1 can be placed in the high-impedance state along with Port $0, \overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$,

Port $\mathbf{0}$ can be programmed as a nibble I/O port, or as an address port for interfacing external memory. When used as an I/O port, Port 0 may be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{2}$ and $\mathrm{P}_{5}$ are used as the handshake controls $\mathrm{DAV}_{0}$ and RDY $_{0}$. Handshake signal assignment is dictated by the I/O direction of the upper nibble $\mathrm{PO}_{4}-\mathrm{PO}_{7}$.

For external memory references, Port 0 can provide address bits $A_{8}-\mathrm{A}_{11}$ (lower nibble) or $A_{8}-A_{15}$ (lower and upper nibble) depending on the required address space. If the address range requires 12 bits or less, the upper nibble of Port 0 can be programmed independently as
allowing the Z8611 to share common resources in multiprocessor and DMA applications. Data transfers can be controlled by assigning $\mathrm{P}_{3}$ as a Bus Acknowledge input, and $\mathrm{P}_{4}$ as a Bus Request output.


Figure 9a. Port 1

I/O while the lower nibble is used for addressing. When Port 0 nibbles are defined as address bits, they can be set to the highimpedance state along with Port 1 and the control signals $\overline{\mathrm{AS}}, \overline{\mathrm{DS}}$ and $\mathrm{R} / \overline{\mathrm{W}}$.


Figure 9b. Port 0

Port 2 bits can be programmed independently as input or output. This port is always available for I/O operations. In addition, Port 2 can be configured to provide open-drain outputs.

Like Ports 0 and 1, Port 2 may also be placed under handshake control. In this configuration, Port 3 lines $\mathrm{P}_{1}$ and $\mathrm{P}_{6}$ are used as the handshake controls lines $\overline{\mathrm{DAV}}_{2}$ and $\mathrm{RDY}_{2}$. The handshake signal assignment for Port 3 lines $P 3_{1}$ and $P 3_{6}$ is dictated by the direction (input or output) assigned to bit 7 of Port 2.

Port 3 lines can be configured as I/O or control lines. In either case, the direction of the eight lines is fixed as four input ( $\mathrm{P}_{3}-\mathrm{P3}_{3}$ ) and four output ( $\mathrm{P}_{4}-\mathrm{P}_{7}$ ). For serial I/O, lines $\mathrm{P} 3_{0}$ and $\mathrm{P} 3_{7}$ are programmed as serial in and serial out respectively.

Port 3 can also provide the following control functions: handshake for Ports 0,1 and 2 ( $\overline{\mathrm{DAV}}$ and RDY); four external interrupt request signals ( $\mathrm{IRQ}_{0}-\mathrm{IRQ}_{3}$ ); timer input and output signals ( $\mathrm{T}_{\mathrm{IN}}$ and $\mathrm{T}_{\text {OUT }}$ ) and Data Memory Select (DM).

The Z8611 allows six different interrupts from eight sources: the four Port 3 lines $\mathrm{P}_{3}-\mathrm{P}_{3}$, Serial In, Serial Out, and the two counter/ timers. These interrupts are both maskable and prioritized. The Interrupt Mask register globally or individually enables or disables the six interrupt requests. When more than one interrupt is pending, priorities are resolved by a programmable priority encoder that is controlled by the Interrupt Priority register.
All Z8611 interrupts are vectored. When an interrupt request is granted, an interrupt machine cycle is entered. This disables all
subsequent interrupts, saves the Program Counter and status flags, and branches to the program memory vector location reserved for that interrupt. This memory location and the next byte contain the 16 -bit address of the interrupt service routine for that particular interrupt request.

Polled interrupt systems are also supported. To accommodate a polled structure, any or all of the interrupt inputs can be masked and the Interrupt Request register polled to determine which of the interrupt requests needs service.

## Clock

The on-chip oscillator has a high-gain, series-resonant amplifier for connection to a crystal or to any suitable external clock source (XTALl $=$ Input, XTAL2 $=$ Output).
The crystal source is connected across XTALl and XTAL2, using the recommended capacitors ( $\mathrm{C}_{1}=15 \mathrm{pF}$ ) from each pin to
ground. The specifications for the crystal are as follows:

- AT cut, series resonant
- Fundamental type, 8 MHz maximum
- Series resistance, $\mathrm{R}_{\mathrm{s}} \leq 100 \Omega$

Power Down Standby Option

The low-power standby mode allows power to be removed without losing the contents of the 124 general-purpose registers. This mode is available to the user as a bonding option whereby pin 2 (normally XTAL2) is replaced by the $\mathrm{V}_{\mathrm{MM}}$ (standby) power supply input. This necessitates the use of an external clock generator (input $=$ XTALI) rather than a crystal source.
The removal of power, whether intended or due to power failure, must be preceded by a software routine that stores the appropriate status into the register file. Figure 10 shows
the recommended circuit for a battery back-up supply system.


Figure 10. Recommended Driver Circuit for Power Down Operation

## Z8612

Development Device

This 64-pin development version of the 40-pin mask-programmed Z8611 (Figure 11) allows the user to prototype the system in hardware with an actual device and to develop the code that is eventually mask-programmed into the on-chip ROM of the Z8611.

The Z8612 is identical to the Z8611 with the following exceptions:

- The internal ROM has been removed.
- The ROM address lines and data lines are buffered and brought out to external pins.
- Control lines for the new memory have been added.
Pin Description. The functions of the Z 8612 I/O lines, $\overline{A S}, \overline{D S}, ~ R / \bar{W}, ~ X T A L 1, ~ X T A L 2 ~ a n d ~$ $\overline{\text { RESET }}$ are identical to those of their Z8611 counterparts. The functions of the remaining 24 pins are as follows:
$\mathbf{A}_{\mathbf{0}}-\mathbf{A}_{11}$. Program Memory Address (outputs). $A_{0}-A_{11}$ access the first 4 K bytes of program memory.


Figure 11. Z8612 Pin Assignments
$\mathrm{D}_{0}-\mathrm{D}_{7}$. Program Data (inputs). Program data levelopment levice
Sontinued)
from the first 4 K bytes of program memory is input through pins $\mathrm{D}_{0}-\mathrm{D}_{7}$.
IACK. Interrupt Acknowledge (output, active

High). IACK is driven High in response to an interrupt during the interrupt machine cycle.
$\overline{\text { MDS. }}$ Program Memory Data Strobe (output, active Low). MDS is Low during an instruction fetch cycle when the first 4 K bytes of program memory are being accessed.

SCLK. System Clock (output). SCLK is the internal clock output through a buffer. The clock rate is equal to one-half the crystal frequency.
$\overline{\text { SYNC. Instruction Sync (output, active Low). }}$ This strobe output is forced Low during the internal clock period preceding an opcode fetch.

8613 rotopack mulator

The Z8613 MPE (Protopack) is used for prototype development and preproduction of mask-programmed applications. The Protopack is a ROMless version of the standard Z8611, housed in a pin-compatible 40 -pin package (Figure 12).
To provide pin compatibility and interchangeability with the standard maskprogrammed device, the Protopack carries (piggy-backs) a 24 -pin socket for a direct interface to program memory (Figure 1). The 24 -pin socket is equipped with 12 ROM


Figure 12. The $\mathbf{Z 8 6 1 3}$ Microcomputer Protopack Emulator
address lines, 8 ROM data lines and necessary control lines for interface to 2732 EPROM for the first 4 K bytes of program memory.

Pin compatibility allows the user to design the pc board for a final 40-pin maskprogrammed Z8611, and, at the same time, allows the use of the Protopack to build the prototype and pilot production units. When the final program is established, the user can then switch over to the 40 -pin mask-programmed Z8611 for large volume production. The Protopack is also useful in small volume applications where masked ROM setup time, mask charges, etc., are prohibitive and program flexibility is desired.

Compared to the conventional EPROM versions of the single-chip microcomputers, the Protopack approach offers two main advantages:

- Ease of developing various programs during the prototyping stage: For instance, in applications where the same hardware configuration is used with more than one program, the Z8613 Protopack allows economical program storage in separate EPROMs (or PROMs), whereas the use of separate EPROM-based single-chip microcomputers is more costly.
Elimination of long lead time in procuring EPROM-based microcomputers.


## nstruction let Iotation

Addressing Modes. The following notation is used to describe the addressing modes and instruction operations as shown in the instruction summary.

IRR Indirect register pair or indirect working-register pair address
Irr Indirect working-register pair only
X Indexed address
DA Direct address
RA Relative address
IM Immediate
R Register or working-register address
r Working-register address only
IR Indirect-register or indirect working-register address
Ir Indirect working-register address only
RR Register pair or working register pair address

Symbols. The following symbols are used in describing the instruction set.
dst Destination location or contents
src $\quad$ Source location or contents
cc Condition code (see list)
@ Indirect address prefix
SP Stack pointer (control registers 254-255)
PC Program counter
FLAGS Flag register (control register 252)
RP Register pointer (control register 253)
IMR Interrupt mask register (control register 251)
Assignment of a value is indicated by the symbol " - ". For example,

$$
\mathrm{dst}-\mathrm{dst}+\mathrm{src}
$$

indicates that the source data is added to the destination data and the result is stored in the destination location. The notation "addr $(\mathrm{n})$ " is used to refer to bit " n " of a given location. For example, dst (7)
refers to bit 7 of the destination operand.


Two-Byte Instructions
Three-Byte Instructions

Figure 13. Instruction Formats

## nstruction iummary

| Instruction and Operation | Addr Mode |  | Opcode Byte (Hex) | $\frac{\text { Flags Affected }}{\text { CZSVDH}}$ |
| :---: | :---: | :---: | :---: | :---: |
|  | dst | src |  |  |
| $\begin{array}{ll} \begin{array}{l} \text { ADC } \mathrm{dst} \text { src } \\ \mathrm{dst}-\mathrm{dst}+\mathrm{src}+\mathrm{C} \end{array} & (\text { Note } 1) \end{array}$ |  |  | $1 \square$ | * * * * 0 |
| $\begin{aligned} & \text { ADD dst,src } \\ & \text { dst }-\mathrm{dst}+\mathrm{src} \end{aligned}$ | (Note 1) |  | $0 \square$ | * * * 0 * |
| AND dst,src dst - dst AND src | (Note 1) |  | $5 \square$ | - * * 0 - - |
| $\begin{aligned} & \hline \text { CALL dst } \\ & S P-S P-2 \\ & @ S P-P C ; P C- \end{aligned}$ | $\begin{aligned} & \hline \text { DA } \\ & \text { IRR } \\ & \hline \text { st } \end{aligned}$ |  | $\begin{aligned} & \text { D6 } \\ & \text { D4 } \end{aligned}$ | - - |
| $\begin{aligned} & \text { CCF } \\ & \mathrm{C}-\mathrm{NOT} \mathrm{C} \end{aligned}$ |  |  | EF | - |
| $\begin{aligned} & \text { CLR dst } \\ & \text { dst }-0 \end{aligned}$ | $\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$ |  | $\begin{aligned} & \hline \mathrm{B0} \\ & \mathrm{B1} \end{aligned}$ | - - - |
| $\begin{aligned} & \text { COM dst } \\ & \text { dst - NOT dst } \end{aligned}$ | $\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$ |  | $\begin{aligned} & 60 \\ & 61 \end{aligned}$ | - * * 0 - - |
| $\begin{aligned} & \overline{\mathbf{C P} \text { dst, src }} \\ & \text { dst - src } \end{aligned}$ | (Note 1) |  | A $\square$ | * * * * - - |
| $\begin{aligned} & \text { DA dst } \\ & \text { dst - DA dst } \end{aligned}$ | $\begin{gathered} \mathrm{R} \\ \mathrm{IR} \end{gathered}$ |  | $\begin{aligned} & 40 \\ & 41 \\ & \hline \end{aligned}$ | * * * X - - |
| $\begin{aligned} & \text { DEC dst } \\ & \text { dst }- \text { dst }-1 \end{aligned}$ | $\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$ |  | $\begin{aligned} & 00 \\ & 01 \end{aligned}$ | - * * * - - |
| DECW dst dst - dst - 1 | $\begin{aligned} & \text { RR } \\ & \text { IR } \\ & \hline \end{aligned}$ |  | $\begin{aligned} & 80 \\ & 81 \end{aligned}$ | - * * * - - |
| $\begin{aligned} & \text { DI } \\ & \text { IMR }(7)-0 \end{aligned}$ |  |  | 8F | - - - - - - |
| $\begin{aligned} & \text { DJNZ } \mathrm{r}, \mathrm{dst} \\ & \mathrm{r}-\mathrm{r}-1 \\ & \text { if } \mathrm{r} \neq 0 \\ & \mathrm{PC}-\mathrm{PC}+\mathrm{dst} \\ & \text { Range: }+127,-128 \end{aligned}$ | RA |  | $\begin{gathered} \mathrm{r} A \\ \mathrm{r}=0-\mathrm{F} \end{gathered}$ | - - - - - |
| EIIMR (7) -1 |  |  | 9 F | - - - - |
| $\begin{aligned} & \text { INC dst } \\ & \mathrm{dst}-\mathrm{dst}+1 \end{aligned}$ | $\stackrel{\mathrm{R}}{\mathrm{IR}}$ |  | $\begin{gathered} \mathrm{rE} \\ \mathrm{r}=0-\mathrm{F} \\ 20 \\ 21 \\ \hline \end{gathered}$ | - * * * |
| $\begin{aligned} & \text { INCW dst } \\ & \mathrm{dst}-\mathrm{dst}+1 \end{aligned}$ | $\begin{aligned} & \hline \mathrm{RR} \\ & \mathrm{IR} \end{aligned}$ |  | $\begin{aligned} & \text { A0 } \\ & \text { A1 } \end{aligned}$ | - * * * |
| IRET <br> FLAGS - @ SP; S <br> PC - @ SP; SP - | $\begin{array}{lr} \hline & \mathrm{BF} \\ -\mathrm{SP}+\mathrm{l} \\ +2 ; \mathrm{IMR}(7) & -1 \\ \hline \end{array}$ |  |  | * * * * |
| JP cc,dst if Cc is true PC - dst | $\begin{gathered} \text { DA } \\ \text { IRR } \end{gathered}$ |  | $\begin{gathered} \mathrm{cD} \\ \mathrm{c}=0-\mathrm{F} \\ 30 \end{gathered}$ | ---- - |
| JR cc,dst if $C C$ is true, $\begin{gathered} \mathrm{PC}-\mathrm{PC}+\mathrm{dst} \\ \text { Range: }+127,-128 \\ \hline \end{gathered}$ | RA |  | $\begin{gathered} \mathrm{cB} \\ \mathrm{c}=0-\mathrm{F} \end{gathered}$ | - - - - - |
| $\begin{aligned} & \text { LD dst,src } \\ & \mathrm{dst} \leftarrow \mathrm{src} \end{aligned}$ | $\begin{aligned} & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{R} \\ & \\ & \mathrm{r} \\ & \mathrm{X} \\ & \mathrm{r} \\ & \mathrm{r} \\ & \mathrm{Ir} \\ & \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{R} \\ & \mathrm{IR} \\ & \mathrm{IR} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \mathrm{Im} \\ \mathrm{R} \\ \mathrm{r} \\ \mathrm{X} \\ \mathrm{X} \\ \mathrm{r} \\ \mathrm{Ir} \\ \mathrm{r} \\ \mathrm{R} \\ \mathrm{IR} \\ \mathrm{Im} \\ \mathrm{Im} \\ \mathrm{R} \end{gathered}$ | $\begin{gathered} \mathrm{rC} \\ \mathrm{r} 8 \\ \mathrm{r} 9 \\ \mathrm{r}=0-\mathrm{F} \\ \mathrm{C7} \\ \mathrm{D} 7 \\ \mathrm{E} 3 \\ \mathrm{~F} 3 \\ \mathrm{E} 4 \\ \mathrm{E5} \\ \mathrm{E} 6 \\ \text { E7 } \\ \text { E7 } \\ \text { F5 } \end{gathered}$ | - - - - |
| LDC dst,src dst - src | $\begin{gathered} \mathrm{r} \\ \mathrm{Irr} \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{Irr} \\ \mathrm{r} \end{gathered}$ | $\begin{aligned} & \hline \mathrm{C} 2 \\ & \mathrm{D} 2 \\ & \hline \end{aligned}$ | - - - - - |
| LDCI dst,src <br> dst - src <br> $\mathrm{r}-\mathrm{r}+\mathrm{l} ; \mathrm{rr}-\mathrm{rr}$ | $\mathrm{Irr}_{1}^{\mathrm{Ir}}$ | $\begin{gathered} \mathrm{Irr} \\ \mathrm{Ir} \end{gathered}$ | $\begin{aligned} & \text { C3 } \\ & \text { D3 } \end{aligned}$ | ----- |


| Instruction and Operation | $\frac{\text { Addr }}{\text { dst }}$ | Src | Opcode Byte (Hex) | $\frac{\text { Flags Affected }}{\text { CZSVD H }}$ |
| :---: | :---: | :---: | :---: | :---: |
| LDE dst,src <br> dst - src | $\begin{gathered} \mathrm{r} \\ \mathrm{Irr} \end{gathered}$ | $\underset{\mathrm{r}}{\mathrm{Irr}}$ | $\begin{aligned} & 82 \\ & 92 \end{aligned}$ | ----- |
| LDEI dst,src dst - src $\mathrm{r}-\mathrm{r}+1$; rr - rr | $\begin{gathered} \mathrm{Ir} \\ \mathrm{Irr} \end{gathered}$ | $\begin{gathered} \mathrm{Irr} \\ \mathrm{Ir} \end{gathered}$ | $\begin{aligned} & 83 \\ & 93 \end{aligned}$ | - - - - - |
| NOP |  |  | FF | - - - - - |
| OR dst,src dst - dst OR src |  |  | $4 \square$ | - * * 0 - - |
| $\begin{aligned} & \text { POP dst } \\ & \text { dst }-@ S P \\ & S P-S P+1 \end{aligned}$ | $\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$ |  | $\begin{aligned} & 50 \\ & 51 \end{aligned}$ | - - - - - |
| $\begin{aligned} & \hline \text { PUSH src } \\ & \mathrm{SP}-\mathrm{SP}-1 \text {; @ SP } \end{aligned}$ |  | $\begin{aligned} & \mathrm{R} \\ & \mathrm{IR} \end{aligned}$ | $\begin{aligned} & 70 \\ & 71 \end{aligned}$ | - - - - - |
| $\begin{aligned} & \text { RCF } \\ & \mathrm{C}-0 \end{aligned}$ |  |  | CF | 0---- - |
| $\begin{aligned} & \text { RET } \\ & \mathrm{PC}-@ \mathrm{SP} ; \mathrm{SP}- \end{aligned}$ | $P+2$ |  | AF | - - - - |
| RL dst 回 |  |  | $\begin{aligned} & 90 \\ & 91 \end{aligned}$ | * * * * - - |
| RLC dst |  |  | $\begin{aligned} & 10 \\ & 11 \end{aligned}$ | * * |
| RR dst |  |  | $\begin{aligned} & \text { E0 } \\ & \text { E1 } \end{aligned}$ | * |
| RRC dst - 자 $-\sqrt{2}$ |  |  | $\begin{aligned} & \hline \mathrm{CO} \\ & \mathrm{Cl} \end{aligned}$ | * * * * - |
| SBC dst,src <br> dst - dst - src - C |  |  | $3 \square$ | * * * * 1 |
| $\begin{aligned} & \hline \mathbf{S C F} \\ & \mathrm{C}-1 \end{aligned}$ |  |  | DF | 1---- |
| SRA dst |  |  | $\begin{aligned} & \hline \text { DO } \\ & \text { DI } \end{aligned}$ | * * * 0 - |
| $\begin{aligned} & \text { SRP src } \\ & \text { RP }- \text { src } \end{aligned}$ |  | Im | 31 | - - - |
| SUB dst, src dst - dst - src | (Note |  | $2 \square$ | * * * * 1 |
| SWAP dst |  |  | $\begin{aligned} & \hline \text { F0 } \\ & \text { F1 } \end{aligned}$ | X * * X - |
| TCM dst,src (NOT dst) AND src | (Note |  | $6 \square$ | - * * 0 - - |
| TM dst, src dst AND src | (Note |  | $7 \square$ | - * * 0 - - |
| XOR dst, src dst - dst XOR src | (Note |  | $\mathrm{B} \square$ | - * * 0 - - |

## Note 1

These instructions have an identical set of addressing modes, which are encoded for brevity. The first opcode nibble is found in the instruction set table above. The second nibble is expressed symbolically by a $\square$ in this table, and its value is found in the following table to the left of the applicable addressing mode pair.

For example, to determine the opcode of an ADC instruction use the addressing modes $r$ (destination) and Ir (source). The result is 13 .

| Addr Mode |  | Lower <br> Opcode Nibble |
| :---: | :---: | :---: |
| dst | src |  |
| r | r | 2 |
| r | Ir | 3 |
| R | R | $\boxed{4}$ |
| R | IR | 5 |
| R | IM | 6 |
| IR | IM | 7 |

R240 SIO

## Serial I/O Register

( $\mathrm{FO}_{\mathrm{H}}$; Read/Write)


- SERIAL DATA ( $\mathrm{D}_{0}=$ LSB)

R241 TMR
Timer Mode Register
( $\mathrm{Fl}_{\mathrm{H}}$; Read/Write)

| $\mathrm{D}_{7}\left[\mathrm{D}_{6} \mid \mathrm{D}_{5}\right.$ | $\mathrm{D}_{4}\left\|\mathrm{D}_{3}\right\| \mathrm{D}_{2}\left\|\mathrm{D}_{1}\right\| \mathrm{D}_{0}$ |
| :--- | :--- |


$0=$ NO FUNCTION $1=\operatorname{LOAD} \mathrm{T}_{0}$
0

GATE INPUT $=01$
RIGGER INPUT $=10$
PETRIGGERABLE)
TRIGGER INPUT $=11$
(RETRIGGERABLE)
$1=$ ENABLE T $T_{0}$ COUNT
$0=$ NO FUNCTION
$1=\operatorname{LOAD} T_{1}$
$0=$ DISABLE $_{1}$ COUN
$1=$ ENABLE $T_{1}$ COUNT

R242 T1
Counter Timer 1 Register
( $\mathrm{F}_{\mathrm{H}}$; Read/Write)

T, INITIAL VALUE (WHEN WRITTEN)
$\mathrm{T}_{1}$ CURRENT VALUE (WHEN READ)

R243 PREl
Prescaler 1 Register
( $\mathrm{FB}_{\mathrm{H}}$; Write Only)



## Counter/Timer 0 Register

( $\mathrm{F}_{\mathrm{H}}$; Read/Write)
 $\mathrm{T}_{0}$ INITIAL VALUE (WHEN WRITTEN)
(RANGE: 1-256 DECIMAL O1-00 HEX)
$\mathrm{T}_{0}$ CURRENT VALUE (WHEN READ) $\mathrm{T}_{0}$ CURRENT VALUE (WHEN READ)

## R245 PRE0

Prescaler 0 Register
( $\mathrm{FS}_{\mathrm{H}}$; Write Only)



R246 P2M
Port 2 Mode Register
( $\mathrm{F} 6_{\mathrm{H}}$; Write Only)

$\mathrm{P2}_{0}-\mathrm{P}_{7}$ IIO DEFINITION O DEFINES BIT AS OUTPUT
1 DEFINES BIT AS INPUT

R247 P3M
Port 3 Mode Register
( $\mathrm{F}_{\mathrm{H}}$; Write Only)



Figure 14. Control Registers

Registers
(Continued)

R248 P01M
Port 0 and 1 Mode Register
( $\mathrm{F8}_{\mathrm{H}}$; Write Only)

$\mathrm{PO}_{4}-\mathrm{PO}_{7} \mathrm{MODE}$
OUTPUT $=00$
$\begin{aligned} \text { INPUT } & =01 \\ A_{12}-A_{15} & =1 X\end{aligned}$
EXTERNAL MEMORY TIMING $\begin{aligned} \text { NORMAL } & =0 \\ \text { EXTENDED } & =1\end{aligned}$
$\mathrm{PO}_{0}-\mathrm{PO}_{3}$ MODE $00=$ OUTPUT
$01=$ INPUT $01=$ INPUT
$1 X=A_{8}-A_{11}$ STACK SELECTION $0=$ EXTERNAL
$1=$ INTERNAL
$\mathrm{P} 1_{0}-\mathrm{P} 1_{7}$ MODE $00=$ BYTE OUTPUT
$01=$ BYTE INPUT $01=B Y T E$ INP
$10=A D_{0}-A D_{7}$
$11=\mathrm{HIGH} \cdot \mathrm{IMPEDANCE} \mathrm{AD} \mathrm{D}_{0}-\mathrm{AD}_{7}$ $\overline{A S}, \overline{D S}, R / \bar{W}, A_{8}-A_{11}, A_{12}-A_{15}$ IF SELECTED

R249 IPR
Interrupt Priority Register
( $\mathrm{F9}_{\mathrm{H}}$; Write Only)


R250 IRQ
Interrupt Request Register
( $\mathrm{FA}_{\mathrm{H}}$; Read/Write)

RESERVED $\longrightarrow \square$ IRQO $=\mathrm{P}_{2}$ INPUT ( $\mathrm{D}_{0}=$ IRQO $)$ IRQ1 $=P 3_{3}$ INPUT
IRQ2 $=\mathrm{P}_{3}$ INPUT
IRQ3 $=\mathrm{P}_{3}$ INPUT, SERIAL INPUT IRQ3 $=\mathrm{P}_{0}$ O INPUT, SERIAL OUTPUT TRQ4 $=T_{1}$
IRQ5

R251 IMR
Interrupt Mask Register
( $\mathrm{FB}_{\mathrm{H}}$; Read/Write)



R252 FLAGS
Flag Register
( $\mathrm{FC}_{\mathrm{H}}$; Read/Write)

$\left.$| $\mathrm{D}_{7}$ | $\mathrm{D}_{6}$ |
| :--- | :--- |
|  | $\mathrm{D}_{5}$ | $\mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \right\rvert\, \mathrm{D}_{0}$



R253 RP
Register Pointer
( $\mathrm{FD}_{\mathrm{H}}$; Read/Write)


R254 SPH

## Stack Pointer

( $\mathrm{FE}_{\mathrm{H}}$; Read/Write)


STACK POINTER UPPER BYTE ( $\mathbf{S P}_{8}-$ SP $_{15}$ )

R255 SPL
Stack Pointer
( $\mathrm{FF}_{\mathrm{H}}$; Read/Write)

| $\mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5}\left\|\mathrm{D}_{4}\right\| \mathrm{D}_{3}\left\|\mathrm{D}_{2}\right\| \mathrm{D}_{1} \mathrm{D}_{0}$ |
| :--- |

BYTE ( $\mathrm{SP}_{0}-\mathrm{SP}_{7}$ )


[^0]| Absolute | Voltages on all pins |
| :--- | :--- |
| Maximum | with respect to GND $\ldots \ldots \ldots . .0 .3 \mathrm{~V}$ to +7.0 V |
| Ratings | Operating Ambient |
|  | Temperature $\ldots \ldots$. See Ordering Information |
|  | Storage Temperature........ $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ |

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## Standard <br> Test

Conditions

The characteristics below apply for the following standard test conditions, unless otherwise noted. All voltages are referenced to GND. Positive current flows into the reference pin. Standard conditions are as follows:

$$
\begin{aligned}
& \square+4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq+5.25 \mathrm{~V} \\
& \square \mathrm{GND}=0 \mathrm{~V} \\
& \square 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}^{*}
\end{aligned}
$$

*See Ordering Information section for package temperature range and product number.


Figure 15. Test Load 1


Figure 16. Test Load 2


Figure 17. External Clock Interface Circuit

| DC Characteristics | Symb | ol Parameter | Min | Max | Unit | Condition | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{\mathrm{CH}}$ | Clock Input High Voltage | 3.8 | $\mathrm{V}_{\mathrm{CC}}$ | V | Driven by External Clock Generator |  |
|  | $\mathrm{V}_{\text {CL }}$ | Clock Input Low Voltage | -0.3 | 0.8 | V | Driven by External Clock Generator |  |
|  | $\mathrm{V}_{\mathrm{IH}}$ | Input High Voltage | 2.0 | $\mathrm{v}_{\mathrm{CC}}$ | v |  |  |
|  | $\mathrm{V}_{\text {IL }}$ | Input Low Voltage | -0.3 | 0.8 | V |  |  |
|  | $\underline{\mathrm{V}_{\text {RH }}}$ | Reset Input High Voltage | 3.8 | $\mathrm{V}_{\mathrm{CC}}$ | v |  |  |
|  | $\mathrm{V}_{\text {RL }}$ | Reset Input Low Voltage | -0.3 | 0.8 | V |  |  |
|  | $\mathrm{V}_{\mathrm{OH}}$ | Output High Voltage | 2.4 |  | V | $\mathrm{I}_{\mathrm{OH}}=-250 \mu \mathrm{~A}$ | 1 |
|  | $\mathrm{V}_{\text {OL }}$. | Output Low Voltage |  | 0.4 | v | $\mathrm{I}_{\text {OL }}=+2.0 \mathrm{~mA}$ | 1 |
|  | IIL | Input Leakage | -10 | 10 | $\mu \mathrm{A}$ | $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$ |  |
|  | IOL | Output Leakage | -10 | 10 | $\mu \mathrm{A}$ | $0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq+5.25 \mathrm{~V}$ |  |
|  | $\mathrm{I}_{\mathrm{IR}}$ | Reset Input Current |  | -50 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{CC}}=+5.25 \mathrm{~V}, \mathrm{~V}_{\mathrm{RL}}=0 \mathrm{~V}$ |  |
|  | $\mathrm{I}_{\mathrm{CC}}$ | $\mathrm{V}_{\text {CC }}$ Supply Current |  | 180 | mA |  |  |
|  | $\mathrm{I}_{\text {MM }}$ | $\mathrm{V}_{\mathrm{MM}}$ Supply Current |  | 10 | mA | Power Down Mode |  |
|  | $\mathrm{V}_{\mathrm{MM}}$ | Backup Supply Voltage | 3 | $\mathrm{V}_{\mathrm{CC}}$ | V | Power Down |  |

## External I/O

 or Memory Read and Write Timing

Figure 18. External I/O or Memory Read/Write

| No. | Symbol | Parameter | Z8611/2/3 |  | Z8611/2/3-12 |  | Notes* $\dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Max | Min | Max |  |
| 1 | TdA(AS) | Address Valid to $\overline{\text { AS }} \dagger$ Delay | 50 |  | 35 |  | 1,2,3 |
| 2 | TdAS(A) | $\overline{\overline{A S}} 1$ to Address Float Delay | 70 |  | 45 |  | 1,2,3 |
| 3 | TdAS(DR) | $\overline{\text { AS }} \dagger$ to Read Data Required Valid |  | 360 |  | 220 | 1,2,3,4 |
| 4 | TwAS | $\overline{\overline{A S}}$ Low Width | 80 |  | 55 |  | 1,2,3 |
| 5 | TdAz(DS) | Address Float to $\overline{\mathrm{DS}}$ । | 0 |  | 0 |  | 1 |
| 6 - TwDSR - $\overline{\mathrm{DS}}$ (Read) Low Width —— 250 - 185 - $12,2,3,4$ |  |  |  |  |  |  |  |
| 7 | TwDSW | $\overline{\overline{D S}}$ (Write) Low Width | 160 |  | 110 |  | 1,2,3,4 |
| 8 | TdDSR(DR) | $\overline{\mathrm{DS}}$ 1 to Read Data Reguired Valid |  | 200 |  | 130 | 1,2,3,4 |
| 9 | ThDR(DS) | Read Data to $\overline{\mathrm{DS}} \uparrow$ Hold Time | 0 |  | 0 |  | 1 |
| 10 | TdDS(A) | $\overline{\mathrm{DS}} 1$ to Address Active Delay | 70 |  | 45 |  | 1,2,3 |
| 11 | TdDS(AS) | $\overline{\mathrm{DS}} \dagger$ to $\overline{\mathrm{AS}}$ ! Delay | 70 |  | 55 |  | 1,2,3 |
| 12 - TdR/W(AS) - R/产 Valid to $\overline{A S} \dagger$ Delay |  |  |  |  |  |  |  |
| 13 | TdDS(R/W) |  | 60 |  | 35 |  | 1,2,3 |
| 14 | TdDW(DSW) | Write Data Valid to $\overline{\mathrm{DS}}$ (Write) ! Delay | 50 |  | 35 |  | 1,2,3 |
| 15 | TdDS(DW) | $\overline{\mathrm{DS}} \dagger$ to Write Data Not Valid Delay | 70 |  | 45 |  | 1,2,3 |
| 16 | TdA(DR) | Address Valid to Read Data Required Valid |  | 410 |  | 255 | 1,2,3,4 |
| 17 | TdAS(DS) | $\overline{\text { AS } 1 \text { to } \overline{\mathrm{DS}} \downarrow \text { Delay }}$ | 80 |  | 55 |  | 1,2,3 |

## NOTES:

1. Test Load 1
2. Timing numbers given are for minimum TpC
3. Also see clock cycle time dependent characteristics table.
4. When using extended memory timing add 2 TpC .
5. All timing references use 2.0 V for a logic " 1 " and 0.8 V for a logic " 0 ".

* All units in nanoseconds (ns).
$\dagger$ Timings are preliminary and subject to change.

Additional
Timing
Table


Figure 19. Additional Timing

| No. | Symbol | Parameter | Z8611/2/3 |  | Z8611/2/3-12 |  | Notes* $\dagger$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | $\mathbf{M a x}$ | Min | Max |  |
| 1 | TpC | Input Clock Period | 125 | 1000 | 83 | 1000 | 1 |
| 2 | TrC, TfC | Clock Input Rise And Fall Times |  | 25 |  | 15 | 1 |
| 3 | TwC | Input Clock Width | 37 |  | 26 |  | 1 |
| 4 | TwTinL | Timer Input Low Width | 100 |  | 70 |  | 2 |
| 5 - TwTinH _ Timer Input High Width |  |  |  |  |  |  |  |
| 6 | TpTin | Timer Input Period | $\frac{\mathrm{TpC}}{8}$ |  | $\frac{\mathrm{TpC}}{8}$ |  | 2 |
| 7 | TrTin, TfTin | Timer Input Rise And Fall Times |  | 100 |  | 100 | 2 |
| 8 | TwIL | Interrupt Request Input Low Time | 100 |  | 70 |  | 2,3 |
| 9 | TwIH | Interrupt Request Input High Time | 3 TpC |  | 3 TpC |  | 2,3 |

NOTES:

1. Clock timing references uses 3.8 V for a logic " 1 " and 0.8 V for 3. Interrupt request via Port 3. a logic " 0 ".
2. Timing reference uses 2.0 V for a logic " 1 " and 0.8 V for † Timings are preliminary and subject to change. a logic " 0 ".
alo.
Z8612, Z8613
Memory Port Timing


Figure 20. Memory Port Timing

| No. | Symbol | Parameter | Z8611/2/3 <br> Min | Max | Z8611/2/3-12 <br> Min | Max |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | Notes*

## NOTES:

1. Test Load 2
2. This is a Clock-Cycle-Dependent parameter. For clock frequen-

* Units are nanoseconds unless otherwise specified; timings are cies other than the maximum, use the following formula:
Z8611/2/3 $=5 \mathrm{TpC}-165$
Z8611/2/3-12 $=5 \mathrm{TpC}-95$


## Handshake

 Timing

Figure 21a. Input Handshake


Figure 21b. Output Handshake


* Add 2 TpC when using extended memory timing

| Ordering <br> Information | Product <br> Number | Package/ <br> Temp | Speed | Description |  | Product <br> Number | Package/ <br> Temp | Speed | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

NOTES: $\mathrm{C}=$ Ceramic, $\mathrm{D}=$ Cerdip, $\mathrm{L}=$ Leadless Chip Carrier (LCC) $\mathrm{P}=$ Plastic, $\mathrm{R}=$ Prototyping Device; $\mathrm{E}=-40^{\circ} \mathrm{C}$ to $+70^{\circ} 85 \mathrm{C}$, $\mathrm{S}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$.

## Package

 Dimensions

40-Pin Ceramic Package

## Package

Dimensions
(Continued)


40-Pin Cerdip Package


44-Pin Leadless Package


40-Pin Protopack Package

| Zilog | West | Midwest | East | United Kingdom |
| :---: | :---: | :---: | :---: | :---: |
| Sales <br> Offices | Sales \& Technical Center | Sales \& Technical Center | Sales \& Technical Center | Zilog (U.K.) Limited |
|  | Zilog, Incorporated | Zilog, Incorporated | Zilog, Incorporated | Zilog House |
|  | 1315 Dell Avenue | 951 North Plum Grove Road | Corporate Place | 43-53 Moorbridge Road |
|  | Campbell, CA 95008 | Suite F | 99 South Bedford St. | Maidenhead |
|  | Phone: (408) 370-8120 | Schaumburg, IL 60195 | Burlington, MA 01803 | Berkshire, SL6 8PL England |
|  | TWX: 910-338-7621 | Phone: (312) 885-8080 | Phone: (617) 273-4222 | Phone: 0628-39200 |
|  | Sales \& Technical Center | TWX: 910-291-1064 | TWX: 710-332-1726 | Telex: 848609 |
|  | Zilog, Incorporated 18023 Sky Park Circle | Sales \& Technical Center Zilog, Incorporated | Sales \& Technical Center Zilog, Incorporated | France |
|  | Suite J | 28349 Chagrin Blvd. | 240 Cedar Knolls Rd. | Zilog, Incorporated |
|  | Irvine, CA 92714 | Suite 109 | Cedar Knolls, NJ 07927 | Tour Europe |
|  | Phone: (714) 549-2891 | Woodmere, OH 44122 | Phone: (201) 540-1671 | Cedex 7 |
|  | TWX: 910-595-2803 | Phone: (216) 831-7040 | Technical Center | 92080 Paris La Defense |
|  | Sales \& Technical Center | FAX: 216-831-2957 | Zilog, Incorporated | France |
|  | Zilog, Incorporated 15643 Sherman Way | South | 3300 Buckeye Rd. <br> Suite 401 | $\text { Telex: } 611445 \mathrm{~F}$ |
|  | Suite 430 | Sales \& Technical Center | Atlanta, GA 30341 | West Germany |
|  | Van Nuys, CA 91406 | Zilog, Incorporated | Phone: (404) 451-8425 | West Germany |
|  | Phone: (213) 989-7485 <br> TWX: 910-495-1765 | 4851 Keller Springs Road, Suite 211 | Sales \& Technical Center | Zilog GmbH <br> Eschenstrasse 8 |
|  |  | Dallas, TX 75248 | Zilog, Incorporated | D-8028 TAUFKIRCHEN |
|  | Sales \& Technical Center Zilog, Incorporated | Phone: (214) 931-9090 | 1442 U.S. Hwy 19 South Suite 135 | Munich, West Germany |
|  | Zilog, Incorporated 1750 112th Ave. N.E. | TWX: 910-860-5850 | Clearwater, FL 33516 | Phone: 89-612-6046 |
|  | Suite D161 | Zilog, Incorporated | Phone: (813) 535-5571 | Telex: 529110 Zilog |
|  | Bellevue, WA 98004 <br> Phone: (206) 454-5597 | 7113 Burnet Rd. Suite 207 | Zilog, Inc. | Japan |
|  |  | Austin, TX 78757 | 613-B Pitt St. Cornwall Ontario | Zilog, Japan K.K. |
|  |  | Phone: (512) 453-3216 | Ca | Konparu Bldg. 5F |
|  |  |  | Phone: (613) 938-1121 | 2-8 Akasaka 4-Chome Minato-Ku, Tokyo 107 |
|  |  |  |  | Japan |
|  |  |  |  | Phone: (81) (03) 587-0528 |
|  |  |  |  | Telex: 2422024 A/B: Zilog J |


[^0]:    *2-byte instruction; fetch cycle appears as a 3-byte instruction

