VARIABLE Q FILTER

DESCRIPTION

APPLICATIONS

The ZXF103 is a versatile analog high Q bandpass filter. It can be configured to provide pass or notch characteristics.

The basic filter section requires 2 resistors and 2 capacitors to set the centre frequency. The frequency range is up to 600 kHz . Two external resistors control filter Q Factor. The Q can be varied up to 50.

ORDERING INFORMATION

PART NUMBER	PACKAGE	PART MARK
ZXF103Q16	QSOP16	ZXF103

PART NUMBER	CONTAINER	INCREMENT
ZXF103Q16TA	Reel 7" 178 mm	500
ZXF103Q16TC	Reel 13" 330 mm	2500

Many filter applications including: -

- Sonar and Ultrasonic Systems
- Line frequency notch
- Signalling
- Motion detection
- Instrumentation
- Low frequency telemetry

FEATURES AND BENEFITS

- Centre Frequency up to 1 MHz
- Variable Q up to 50
- Low distortion
- Low noise
- Low power 25mW
- Devices easily cascaded
- Small QSOP16 package

SYSTEM DIAGRAM

ZXF103

ABSOLUTE MAXIMUM RATINGS

Voltage on any pin
Operating temperature range
Storage temperature
7.0V (relative to OV)

0 to $70^{\circ} \mathrm{C}$
-55 to $125^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS

Test Conditions: Temperature $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.00 \mathrm{~V}, 0 \mathrm{~V}=0.00 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$

GENERAL CHARACTERISTICS	Conditions	Min.	Typical	Max.	Units
Parameter			4.0	5.0	mA
Operating current				600 1000	kHz
Max. operating frequency	Vout $=1.6 \mathrm{~V}$ p-p Vout $=1.0 \mathrm{~V}$ p-p	0.5		50	
Q usable range			100		$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Centre Frequency temperature coefficient	$\mathrm{Q}=30, \quad$ fo $=1 \mathrm{kHz}$		0.1		$\% /{ }^{\circ} \mathrm{C}$
Q temperature coefficient	$\mathrm{Q}=30, \quad$ fo $=1 \mathrm{kHz}$		20		$\mathrm{nV} / \mathrm{NHz}$
Voltage noise	$1-100 \mathrm{kHz}$	10	15	20	$\mathrm{k} \Omega$
Input impedance			2		$\mathrm{~V} \mathrm{pk}-\mathrm{pk}$
Linear Output Range	Output load $=10 \mathrm{k} \Omega$		450		$\mu \mathrm{~A}$
Sink current			450		$\mu \mathrm{~A}$
Source current					
Output impedance				Ω	

Pin	Name	Function
1	R2	Phase retard node
2	0 V	0 Volts
3	RC2	Phase retard node
4	BIAS	Internal bias generator
5	RC1	Phase advance node
6	OV	0 Volts
7	C1	Phase advance node
8	FI1	Filter input mode dependent
9	FI2	Filter input, mode dependent
10	FO	Filter output for all modes
11	VcC	+5 VoIt supply
12	N/C	No connection
13	GP2	Loop gain node
14	GP3	Loop gain node
15	Vcc	+5 Volt supply
16	GP1	Loop gain node

Filter Configurations and Responses

Notch Filter

AC Filter Performance

$\mathrm{Fo}=\frac{1}{2 \pi \mathrm{RC}}$
where $R=R 1=R 2$
and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$
$\mathrm{Q} \propto \frac{\mathrm{R} 4}{\mathrm{R} 3}$
where $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$ and $\mathrm{R} 4 \geqslant 2 \mathrm{k} \Omega$ and Cl and $\mathrm{C} 2 \geqslant 50 \mathrm{pF}$

See "Designing for a value of Q" for more details.

ZXF103

Filter Configurations and Responses (Continued) Inverse Notch Filter (with OdB Stop Band)

AC Filter Performance

Frequency (Hz)
$F o=\frac{1}{2 \pi R C}$
where $R=R 1=R 2$
and $\mathrm{C}=\mathrm{C} 1=\mathrm{C} 2$
$Q \propto \frac{R 4}{R 3}$
where $\mathrm{R} 1, \mathrm{R} 2, \mathrm{R} 3$ and $\mathrm{R} 4 \geqslant 2 \mathrm{k} \Omega$ and $C 1$ and $C 2 \geqslant 50 p F$

Filter Configurations and Responses (Continued) Inverse Notch Filter (with attenuating skirts)

$\mathrm{Fo}=\frac{1}{2 \pi \mathrm{RC}}$
where $\mathrm{R}=\mathrm{R} 1=\mathrm{R} 2$
and $\mathrm{C}=\mathrm{Cl}=\mathrm{C} 2$
$\mathrm{Q} \propto \frac{\mathrm{R} 4}{\mathrm{R} 3}$
where $R 1, R 2, R 3$ and $R 4 \geqslant 2 k \Omega$ and C 1 and $\mathrm{C} 2 \geqslant 50 \mathrm{pF}$

See "Designing for a value of Q" for more details.

The skirt 'roll off' away from the peak is $-20 \mathrm{~dB} /$ Decade regardless of chosed Q.

Typical responses from the circuit with component values derived from the diagram.

ZXF103

Designing for a value of Q

As mentioned on the configuration pages, there is a proportional relationship between the ratio of R4 and R3, and Q .
$\mathrm{Q} \propto \frac{\mathrm{R} 4}{\mathrm{R} 3}$
These resistors define the gain of an inverting amplifier that determines the peak value of gain and therefore the Q of the filter, as Q is described as;
$Q=\frac{\text { Fo }}{-3 \mathrm{dBBandwidth}}$
This value of required gain is quite critical. As the maximum value of Q is approached, too much gain will cause the filter to oscillate at the centre frequency Fo. A small reduction of gain will cause the value of Q to fall significantly. Therefore, for high values of Q factor or tight tolerances of lower values of Q, the resistor ratio must be trimmed.

Frequency dependant effects must be accounted for in determining the appropriate gain. As the frequency increases, the effective circuit gain reduces. The required gain is nominally two but at higher frequencies it will need to be slightly greater than two in order to compensate for loss of gain and internal phase shifts.

This is not really a problem for circuits where the desired Fo remains constant, as the phase shifts are accounted for permanently. For designs where Q is high and $F o$ is to be 'swept', care must be taken that a gain appropriate at the highest frequency does not cause oscillation at the lowest.

Variation in Q increases from device to device, as the value of Q increases, due to internal gain spreads.

Evaluation Board Schematic

The evaluation board is designed for operation at 70 kHz .

Notch
Notch Pass $1 \quad J 2$ and J 3 (OdB Stop Band)
Notch Pass 2

```
J 1 and J 2
    j 2 and J 3 (0dB Stop Band)
    J 3 only (Attenuating skirts)
```


QSOP16

DIM	Millimetres			Inches	
	MIN	MAX	MIN	MAX	
A	4.80	4.98	0.189	0.196	
B	0.635		0.025 NOM		
C	0.23 REF	0.009 REF			
D	0.20	0.30	0.008	0.012	
E	3.81	3.99	0.15	0.157	
F	1.35	1.75	0.053	0.069	
G	0.10	0.25	0.004	0.01	
J	5.79	6.20	0.228	0.244	
K	0°	8°	0°	8°	

Conforms to J EDEC MO-137AB Iss A

Zetex GmbH	Zetex Inc.	Zetex (Asia) Ltd.	These are supported by
Streitfeldstraße 19	47 Mall Drive, Unit 4	3701-04 Metroplaza, Tower 1	agents and distributors in
D-81673 München	Commack NY 11725	Hing Fong Road,	major countries world-wide
Germany	USA	Kwai Fong, Hong Kong	© Zetex plc 2001
Telefon: (49) 89 45 49 49 0	Telephone: (631) 543-7100	Telephone:(852) 26100611	
Fax: (49) 89 45 49 49 49	Fax: (631) 864-7630	Fax: (852) 24250 494	www.zetex.com

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

