

Cöhreu-Bokūweute ECC 8025

Doppeltriode mit getrennten Katoden

Die Röhre ECC 802 S ist eine Doppeltriode mit getrennten Katoden, gekennzeichnet durch eine Steilheit von 2,2 maA/V und einen Verstärkungsfaktor $\mu=17$. Sie besitzt demzufolge einen großen Aussteuerbereich. Diese Eigenschaften erschließen ihr eine vielseitige Anwendung in Nf-Verstärkern, Treiberstufen, Phasenumkehrschaltungen, Sperrschwingern, Multivibratoren usw. Im Vergleich zu der ihr ähnlichen Rundfunktype ECC 82 besitzt sie noch zusätzlich die speziellen Eigenschaften: lange Lebensdauer, Zuverlässigkeit, Stoß- und Schüttelfestigkeit.

Heizung: Indirekt geheizte Katode für Parallelspeisung

Heizspannung: Ut 6,3 ±5% 12,6 ±5 % Heizstrom: mΑ

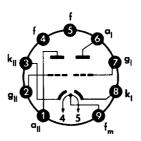
- Zuverlässigkeit: Der P-Faktor gibt an, wie groß der Röhrenausfall in Promille je 1000 Std. werden kann. Er liegt bei ca. 1,5 % je 1000 Std.
- Lange Lebensdauer: Für diese Röhre wird eine Lebensdauer von 10 000 Std., gemittelt über 100 Röhren, garantiert. Siehe "Ende der Lebensdauer".
- Enge Toleranzen: Bei dieser Röhre sind die Streuungen der elektrischen Werte gegenüber Rundfunkröhren eingeengt. Siehe "Meßwerte".
- Stoß- und Vibrationsfestigkeit: Die Röhre kann Beschleunigungen bis 2,5 g bei 40 Hz längere Zeit sowie Stoßbeschleunigungen bis 500 g kurzzeitig aushalten.

Allgemeine Werte:

Meßwerte ie System 250 Ua **Anodenstrom** vom Anfangswert $\mathbf{R}_{\mathbf{k}}$ 800 Ω auf \leq 7,5 mA abgesunken Ia 10,6 ±1,9 mA 2,2 +0,5 Steilheit vom Anfangswert mA/V S auf \leq 1,5 mA/V abgesunken kΩ 7,7 negativer Gitterstrom vom Anfangswert 17 auf $> 1,0 \mu A$ angestiegen

Grenzwerte ie System

U	550	٧
U _{ao} U _a	300	٧
N _a	2,75	W
ι _k	15	mA
Ikan 1)	250	mA
I _{ksp} 1) R _g 2) R _g 3) U _{fksp}	1	MΩ
R *)	0,25	MΩ
ng i	100	٧
tKolben	180	• C

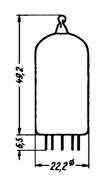

1) 10% einer Periode, $t_{max} = 2 \text{ ms}$

2) U autom.

ਾ) Uੂ fest

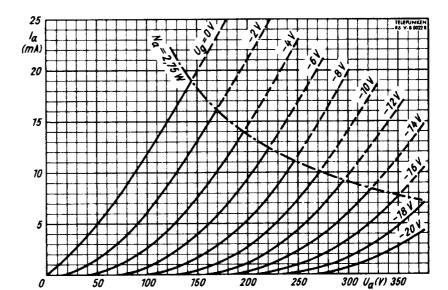
Ende der Lebensdauer

Sockelschaltbild

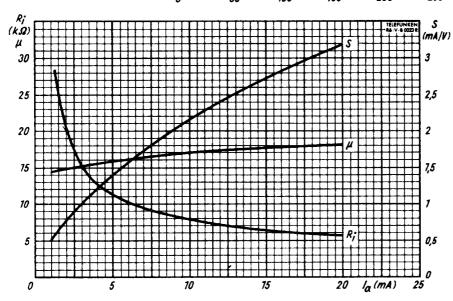


Pico 9 (Noval)

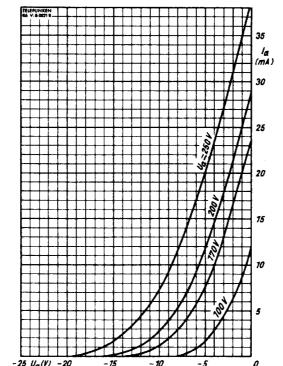
Kanazitäten


System I			System II		
c _θ	$1,75 \pm 0,25$	рF	c _e	$1,75 \pm 0,25$	pF
c _a	0.37 ± 0.1	pF	ca	0.26 ± 0.09	рF
c _{ga}	$1,6 \pm 0,2$	рF	cga	$1,6 \pm 0,2$	рF

max. Abmessungen DIN 41 539, Nenngröße 40, Form A



Gewicht: ca 14 g



 $I_a = f(U_a)$ $U_g = Parameter$

S, R_i , $\mu = f(I_a)$ $U_a = 250 \text{ V}$

 $I_a = f(U_g)$ $U_a = Parameter$

> ECC 802 S/1a 7. 1957